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Emerging applications of wireless sensor networks (WSNs) require real-time quality

of service (QoS) guarantees to be provided by the network. Traditional analysis work

only focuses on the first-order statistics, such as the mean and the variance of the

QoS performance. However, due to unique characteristics of WSNs, a cross-layer

probabilistic analysis of QoS performance is essential. In this dissertation, a compre-

hensive cross-layer probabilistic analysis framework is developed to investigate the

probabilistic evaluation and optimization of QoS performance provided by WSNs. In

this framework, the distributions of QoS performance metrics are derived, which are

natural tools to discover the probabilities to achieve given QoS requirements. Com-

pared to first-order statistics, the distribution of these metrics reveals the relationship

between the performance of QoS-based operations and the probability to achieve the

performance. Using a Discrete-Time Markov queueing model in node-level analysis

and fluid models in network-level analysis, the distributions of end-to-end delay, the

network lifetime, and the event detection delay are then analyzed. Based on the eval-

uation of QoS metrics, a probabilistic optimization framework is developed to demon-

strate the investigation of the optimal network and protocol parameters. Guidelines

of designing networks and choosing optimal parameters for WSNs are provided using

the optimization framework. Intensive testbed experiments and simulations are used

to validate the accuracy of the proposed evaluation and optimization framework.
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Lance C. Pérez, whose comments and suggestions on my research topics have helped

me keep my dissertation in the right direction.

I would also thank my friends and lab mates, Mr. Xin Dong, Mr. Dave Anthony,

and Mr. Paul Bennett. The conversations with these people have always been a great

pleasure, and have sparkled a lot of great ideas which eventually became a part of

this dissertation.

And last but not least, I would thank Holland Computing Center of the University

of Nebraska and especially Professor David Swanson. The computer simulations and

model evaluations in this dissertation were partially completed utilizing the FireFly

supercomputer in Holland Computing Center.



v

GRANT INFORMATION

This dissertation is supported, in part, by grants from the National Science Founda-

tion (0707975) and the Air Force Office of Scientific Research (FA9550-06-1-0375).



vi

Contents

Contents vi

List of Figures xii

List of Tables xvi

1 Introduction 1

1.1 Research Objectives and Solutions . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Probabilistic Packet Delay Analysis . . . . . . . . . . . . . . . 4

1.1.2 Probabilistic Event Detection Delay Analysis . . . . . . . . . . 5

1.1.3 Probabilistic Energy Consumption and Lifetime Analysis . . . 7

1.1.4 Probabilistic Network Optimization . . . . . . . . . . . . . . . 8

1.2 Key Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Dissertation Organization . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Methodology of the Probabilistic QoS Analysis 11

2.1 System Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Traffic Pattern Models . . . . . . . . . . . . . . . . . . . . . . 14



vii

2.1.3.1 Locally Generated Traffic Pattern: Event-Based Ap-

plications . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3.2 Locally Generated Traffic Pattern: Monitoring Appli-

cations . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3.3 Relay Traffic Pattern . . . . . . . . . . . . . . . . . . 15

2.2 Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Node-Level Analysis . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Network-Level Analysis . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Multi-Initial-Point Global Optimization Technique . . . . . . . 20

2.3 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 TinyOS CSMA/CA MAC Protocol . . . . . . . . . . . . . . . 22

2.3.2 Anycast Cross-Layer Protocol . . . . . . . . . . . . . . . . . . 23

2.4 Testbed and Simulation Validations . . . . . . . . . . . . . . . . . . . 25

2.4.1 Testbed Experiments . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1.1 Measuring the Communication Delay . . . . . . . . . 26

2.4.1.2 Measuring the Energy Consumption of Nodes . . . . 27

2.4.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 End-to-End Delay Distribution 30

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2 Problem Definition and System Model . . . . . . . . . . . . . . . . . 33

3.2.1 Single-hop Delay Distribution . . . . . . . . . . . . . . . . . . 33

3.2.2 End-to-End Delay Distribution . . . . . . . . . . . . . . . . . 34

3.3 Single-hop Delay Distribution . . . . . . . . . . . . . . . . . . . . . . 34

3.3.1 Constructing Markov chain {Xn} . . . . . . . . . . . . . . . . 36

3.3.2 A Basic Example . . . . . . . . . . . . . . . . . . . . . . . . . 42



viii

3.3.3 Absorbing time for {Yn} . . . . . . . . . . . . . . . . . . . . . 44

3.4 End-to-end Delay Distribution . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Deterministic Deployment . . . . . . . . . . . . . . . . . . . . 48

3.4.2 Random Deployment . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Case Study: TinyOS CSMA/CA protocol . . . . . . . . . . . . . . . . 53

3.5.1 Markov Process Overview . . . . . . . . . . . . . . . . . . . . 53

3.5.2 Constructing the DTMC {Xn} . . . . . . . . . . . . . . . . . 54

3.6 Case Study: Anycast protocol . . . . . . . . . . . . . . . . . . . . . . 59

3.6.1 Markov Process Overview . . . . . . . . . . . . . . . . . . . . 60

3.6.2 Constructing the DTMC {Xn} . . . . . . . . . . . . . . . . . 61

3.7 Analytical Results and Empirical Validations . . . . . . . . . . . . . . 66

3.7.1 Experiments for TinyOS CSMA/CA MAC protocol . . . . . . 67

3.7.1.1 Single-hop Delay Distribution . . . . . . . . . . . . . 67

3.7.1.2 End-to-End Delay Distribution . . . . . . . . . . . . 70

3.7.2 Experiments for Anycast Protocol . . . . . . . . . . . . . . . . 73

3.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Event Detection Delay Distribution 78

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 System Model and Problem Definitions . . . . . . . . . . . . . . . . . 80

4.2.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 The Anycast Protocol . . . . . . . . . . . . . . . . . . . . . . 82

4.2.3 Problem Definitions . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Transient Analysis of Event Detection . . . . . . . . . . . . . . . . . . 85

4.4 Simplified Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Testbed Validation and Simulation Results . . . . . . . . . . . . . . . 93



ix

4.5.1 Validation of the Event Detection Delay Analysis . . . . . . . 93

4.5.2 Validation in Larger-Scale Networks . . . . . . . . . . . . . . . 96

4.5.3 Comparison Between the Models . . . . . . . . . . . . . . . . 99

4.5.4 Limitations of the Models . . . . . . . . . . . . . . . . . . . . 100

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Network Lifetime Distribution 102

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Problem Definition and System Model . . . . . . . . . . . . . . . . . 104

5.2.1 Single Node Energy Consumption Distribution . . . . . . . . . 105

5.2.1.1 Random Deployment . . . . . . . . . . . . . . . . . . 106

5.2.1.2 Deterministic Deployment . . . . . . . . . . . . . . . 106

5.2.1.3 Energy Consumption for Sensing . . . . . . . . . . . 107

5.2.1.4 Energy Consumption for Communication and Pro-

cessing . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2.1.5 Energy Consumption Due to Topology Randomness . 109

5.2.2 Node Lifetime and Network Lifetime Distributions . . . . . . . 109

5.3 Single Node Energy Consumption Distribution . . . . . . . . . . . . . 110

5.3.1 Structure of Markov chain {Xn} . . . . . . . . . . . . . . . . . 110

5.3.2 Energy Consumption for Communication and Processing . . . 111

5.3.3 Energy Consumption Due to Topology Randomness . . . . . 112

5.3.4 Asymptotic Energy Consumption Distribution . . . . . . . . . 113

5.4 Lifetime Distribution Analysis . . . . . . . . . . . . . . . . . . . . . . 115

5.4.1 Single-Node Lifetime Distribution . . . . . . . . . . . . . . . . 115

5.4.2 Network Lifetime Distribution . . . . . . . . . . . . . . . . . . 116

5.5 Case Study: Anycast Protocol . . . . . . . . . . . . . . . . . . . . . . 117



x

5.5.1 Energy Consumption in Each State . . . . . . . . . . . . . . . 118

5.5.2 Communication and Data Processing Energy Consumption . 122

5.5.3 Topology Randomness . . . . . . . . . . . . . . . . . . . . . 122

5.5.4 Total Energy Consumption and Lifetime Distribution . . . . . 124

5.5.5 Extension to Other Protocols . . . . . . . . . . . . . . . . . . 124

5.6 Analytical Results and Empirical Validations . . . . . . . . . . . . . . 124

5.6.1 Experiment and Simulation Setup . . . . . . . . . . . . . . . . 125

5.6.1.1 Testbed Experiment Setup . . . . . . . . . . . . . . . 125

5.6.1.2 Simulation Setup and Improvements . . . . . . . . . 125

5.6.2 Validation of the Single-node Energy Analysis . . . . . . . . . 128

5.6.3 Obtaining the Scaling Coefficient . . . . . . . . . . . . . . . . 129

5.6.4 Validation of the Normal Distribution Approximation . . . . 132

5.6.5 Model Validation with Different Network Parameters . . . . . 134

5.6.6 Validation of Lifetime Distributions . . . . . . . . . . . . . . 138

5.6.7 Network Design Observations . . . . . . . . . . . . . . . . . . 140

5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6 Probabilistic Network Optimization 143

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.2 Probabilistic Optimization Framework . . . . . . . . . . . . . . . . . 145

6.2.1 Objective and Constraint Functions . . . . . . . . . . . . . . . 145

6.2.2 Optimization Problem Formulation . . . . . . . . . . . . . . . 147

6.2.2.1 Quantile Objective Optimization . . . . . . . . . . . 148

6.2.2.2 Quantile Interval Objective Optimization . . . . . . 148

6.2.2.3 Deterministic Objective Optimization . . . . . . . . 149

6.2.3 Solution to the Optimization Problems . . . . . . . . . . . . . 149



xi

6.3 Case Study: Randomly Deployed Network with Anycast Protocol . . 151

6.3.1 Topology Model and the Anycast Protocol . . . . . . . . . . . 152

6.3.2 Unified Probabilistic QoS Analytical Model . . . . . . . . . . 152

6.3.3 Probabilistic QoS Optimization Problems . . . . . . . . . . . . 153

6.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4.1 Numerical Analysis of Probabilistic QoS Metrics . . . . . . . . 155

6.4.1.1 Probabilistic End-to-End Delay . . . . . . . . . . . . 156

6.4.1.2 Probabilistic Network Lifetime . . . . . . . . . . . . 158

6.4.1.3 Throughput at the Sink . . . . . . . . . . . . . . . . 160

6.4.1.4 Probabilistic Measures . . . . . . . . . . . . . . . . . 161

6.4.2 Probabilistic QoS Optimization . . . . . . . . . . . . . . . . . 163

6.4.2.1 Brute Force Search Solution . . . . . . . . . . . . . . 163

6.4.2.2 Accuracy of the Multiple Local Search . . . . . . . . 164

6.4.2.3 Stochastic Optimization Aided Network Design . . . 166

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7 Dissertation Conclusions 170

7.1 Dissertation Contributions . . . . . . . . . . . . . . . . . . . . . . . . 170

7.1.1 Formal Definitions of Probabilistic QoS Performance Metrics . 170

7.1.2 Analytical Framework to Evaluate the Probabilistic QoS Metrics171

7.1.3 Investigation on Relationship between Network Parameters and

the QoS Performance Metrics . . . . . . . . . . . . . . . . . . 171

7.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . 172

Publications Resulted from This Dissertation 174

Bibliography 175



xii

List of Figures

1.1 The structure of research objectives in this dissertation. . . . . . . . . . 3

2.1 The distribution of inter-arrival time for different types of traffic in a 10-

hop chain network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 The transmission process for a packet with the TinyOS CSMA/CA MAC

protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 The transmission process and routing path for a packet with the anycast

protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 The testbed in the ceiling of the CPN Lab. . . . . . . . . . . . . . . . . . 26

2.5 The suspended frame testbed in the CPN Lab. . . . . . . . . . . . . . . . 27

2.6 The technique used to measure the current drawn by each node. . . . . . 27

2.7 The energy monitoring circuitry. . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 The structures of Markov chains {Xn} and {Yn}. . . . . . . . . . . . . . 35

3.2 The structure of {Xn} for the simple example. . . . . . . . . . . . . . . 42

3.3 The feasible region, Fx, and the infeasible region, Bx, of node x. . . . . . 51

3.4 Markov chain structure for each attempt for TinyOS CSMA protocol. . . 53

3.5 The transmission process for a packet with the TinyOS CSMA/CA MAC

protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54



xiii

3.6 The Markov chain structure of the communication process and the quies-

cent process for the anycast protocol. . . . . . . . . . . . . . . . . . . . . 59

3.7 The feasible region and infeasible region around node x, divided into small

areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.8 The cdf of the single hop delay of the CSMA/CA protocol. . . . . . . . 68

3.9 The topology and the end-to-end delay distribution for the multi-hop grid

experiments with the TinyOS CSMA/CA protocol. . . . . . . . . . . . . 69

3.10 The topology and the end-to-end delay distribution for the in-door exper-

iments with the TinyOS CSMA/CA protocol. . . . . . . . . . . . . . . . 71

3.11 The analysis, simulation and experiment results of end-to-end delay dis-

tribution with the Anycast protocol for a node with distance r = 4.3 m to

the sink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.12 The analysis and simulation results of end-to-end delay distribution with

the Anycast protocol for a node with distance r = 50 m to the sink. . . . 74

3.13 The relationship between network parameters and the delivery probability

with the Anycast protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.1 The network including the sink and the event generation area. . . . . . 81

4.2 The timing of node operations for the anycast protocol studied for event

detection delay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 The map of the testbed experiment, and the results of testbed experiment,

the simulation and the models. . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Mean delay and delay distribution for larger-scale networks. . . . . . . . 97

4.5 Bottlenecks in random WSNs . . . . . . . . . . . . . . . . . . . . . . . . 100

5.1 The process of transmitting beacon packets. . . . . . . . . . . . . . . . . 118



xiv

5.2 The feasible region and infeasible region around node x, divided into small

areas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Testbed experiments, simulation, and analytical results for the cdf of the

energy consumption during 1 min. . . . . . . . . . . . . . . . . . . . . . . 129

5.4 The scaling coefficient c as a function of network density ρ in terms of

total number of nodes N . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5 The scaling coefficient c as a function of per-node traffic rate λlc and the

duty cycle ξ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.6 cdf of the energy consumption during longer periods. . . . . . . . . . . . 133

5.7 The mean of energy consumption during 1 hour for a node located at 27

m from the sink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.8 The variance of energy consumption during 1 hour for a node located at

27 m from the sink. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.9 The network lifetime distribution and the lifetime distribution of a node

at r = 27 m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.10 The probability of achieving 500 hours of node lifetime and network life-

time with various densities, traffic rates and duty cycles. . . . . . . . . . 141

6.1 The non-convex 0.8-quantile of energy consumption as a function of the

network density and the traffic rate. . . . . . . . . . . . . . . . . . . . . 150

6.2 Probabilistic end-to-end delay and network lifetime as a function of traffic

rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6.3 Probabilistic end-to-end delay and network lifetime as a function of duty

cycle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.4 Probabilistic end-to-end delay and network lifetime as a function of net-

work density. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157



xv

6.5 The throughput as a function of traffic rate, duty cycle, and network

density, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.6 p-quantile of the end-to-end delay and the average delay vs. network density.162

6.7 The difference between the optimal result found in each setup and the

optimal result found in every setup. . . . . . . . . . . . . . . . . . . . . . 165

6.8 Optimal network lifetime with varying (0.1, 0.9)-quantile interval require-

ment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.9 Optimal network density with varying throughput requirement. . . . . . 168



xvi

List of Tables

3.1 List of radio and timing parameters for TinyOS CSMA/CA protocol. . . 67

3.2 List of channel-related constants and parameters. . . . . . . . . . . . . . 67

3.3 List of parameters for the anycast protocol. . . . . . . . . . . . . . . . . 72

4.1 List of radio, timing and protocol related constants and parameters. . . . 93

4.2 List of channel-related constants and parameters. . . . . . . . . . . . . . 94

5.1 List of radio, timing and protocol related constants and parameters. . . . 126

5.2 List of channel-related constants and parameters. . . . . . . . . . . . . . 127

5.3 The simulation time and speed-up comparison for a 1-day simulation. . . 127

6.1 List of radio, timing and protocol related constants and parameters. . . . 155

6.2 List of channel-related constants and parameters. . . . . . . . . . . . . . 156



1

Chapter 1

Introduction

Wireless sensor networks (WSNs) have been utilized in many applications as both

a connectivity infrastructure and a distributed data generation network due to their

ubiquitous and flexible nature [5]. Increasingly, a large number of WSN applications

are investigated with various quality requirements for different network services spe-

cific to low-cost hardware, and unpredictable environment conditions [4, 15]. These

requirements necessitate a comprehensive analysis of the Quality of Service (QoS)

provided by the network. Based on this analysis, an optimization tool for network

and protocol design is also essential.

QoS issues and techniques have been intensively investigated for ATM networks

[19, 62], IP networks [7, 61, 62], and traditional wireless networks [14, 64]. In these

studies, the evaluation of QoS is mainly focused on the communication quality char-

acterized by communication delay, jitter, bandwidth, and loss rate. Traditional met-

rics, however, cannot fully characterize the QoS in WSNs [15], because of the distinct

characteristics of WSN applications as listed in the following.

First, WSNs are utilized for a different set of applications from those with tra-

ditional networks [5]. These applications emphasize different characteristics of the
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network and require different services to be provided by the network. Thus, the

metrics to evaluate the quality of these services are also different from traditional

QoS metrics. For example, for most WSN applications, sensor nodes are powered

by batteries with limited capacity, and replacing the batteries is difficult. Thus, the

network lifetime under battery constraints is a QoS measure that is more important

than in traditional network analysis. Other examples of such QoS measures include

the delay for event detection, and sensing rate of individual sensors.

Second, the environment conditions of WSNs are in nature unreliable and random.

Sensor nodes are usually manufactured en masse with low-cost hardware. Many ap-

plications in harsh environments such as wild fields and battlegrounds further impose

possible physical damage to the nodes [5]. Thus, it is expected that the nodes may

randomly cease to work, resulting in a random network topology. Moreover, the wire-

less communication among nodes are also prone to random noises due to low-profile

radio transceivers and limited communication power. All these random factors re-

sult in a large variance in QoS metrics, and cannot be thoroughly evaluated using

traditional approaches, such as mean delay analysis [1, 9, 40], or worst-case analysis

[12, 32].

Finally, due to limited resource availability, QoS analysis must be performed in a

cross-layer manner. In traditional network analysis, with adequate resources assumed,

the maintainability and modularity are emphasized at the expense of additionally con-

sumed resources such as storage, computing power, and energy supply. Hence, the

QoS is separately provided by different network layers. In contrast, with limited re-

sources, WSNs are usually designed to exploit cross-layer operations and meet QoS

requirements more efficiently [63]. For example, cross-layer integration can lead to

significant energy conservation [93, 95]. Moreover, requirements on different QoS

metrics can contradict with each other, and a tradeoff must be made to provide opti-
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Figure 1.1: The structure of research objectives in this dissertation.

mal services. For example, lower delay and longer lifetime are usually contradicting

design goals. Lower delay usually requires a high duty cycle, whereas longer lifetime

usually favors low duty cycle. Therefore, a QoS analysis framework that captures the

tradeoffs for the protocols and operations in the entire software stack is desirable.

In this dissertation, we provide a comprehensive cross-layer probabilistic analytical

and optimization framework to evaluate the QoS provisioning in WSNs. The research

objectives and solutions are discussed in the following.

1.1 Research Objectives and Solutions

As shown in Figure 1.1, the research objectives in this dissertation are structured in

three levels. The bottom level and the middle level are the probabilistic analysis of
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QoS metrics, whereas the top level is a probabilistic network optimization framework.

At the bottom level, i.e., the node level, the single-hop delay, the single-node energy

consumption, and the node-level lifetime are studied. At the middle level, i.e., the

network level, the end-to-end delay, the network lifetime, and the event-detection

delay are investigated. Based on the analysis of these QoS metrics, an optimization

framework is then developed to aid network and protocol design. Due to the vast

diversity in services requested by WSN applications, it is infeasible to provide QoS

analysis in every aspect of application requirements. Therefore, we focus on the delay

and the lifetime metrics, which are important for most applications.

In the following, the rationale behind the probabilistic investigation of these QoS

metrics is explained in detail.

1.1.1 Probabilistic Packet Delay Analysis

One of the most important QoS metrics in WSNs is the packet communication delay.

Characterizing communication delay in distributed systems has been investigated

in different contexts. The latency performance of WSNs in terms of its first order

statistics, i.e., the mean and the variance, has been analyzed in recent studies [1, 9, 40].

However, complex and cross-layer interactions in multi-hop WSNs require a complete

stochastic characterization of the delay. Several efforts have been made to provide

probabilistic bounds on delay. As an example, the concept of Network Calculus

[20] has been extended to derive probabilistic bounds for delay through worst case

analysis [12, 32]. However, because of the randomness in wireless communication

and the low power nature of the communication links in WSNs, strict worst-case

analysis cannot capture the stochastic behavior of end-to-end delay. Moreover, real-

time queueing theory has been exploited to provide stochastic models for unreliable
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networks [55, 101]. However, these models assume a heavy traffic rate, which is not

applicable for WSNs.

Recently, probabilistic analysis of delay has been performed for broadcast networks

[8, 70, 79, 80, 87] considering several medium access control (MAC) protocols. Indeed,

the cumulative distribution function (cdf ) of the delay for a given deadline can be

used as a probabilistic metric for reliability and timeliness. However, while channel

contention has been adequately modeled in these studies, additional delay due to

multi-hop communication, queuing delay, and wireless channel errors have not been

captured. Capturing these cross-layer effects is imperative to completely characterize

the delay distribution in WSNs.

One of the goals of the proposed analytical framework is to provide comprehensive

analysis for the delay in WSNs, among other QoS metrics. The delay distribution is an

important metric to evaluate the communication services provided by the network,

since it measures the probability that the network meets a given deadline. The

developed framework highlights the relationship between network parameters and the

delay distribution in multi-hop WSNs. Using this framework, real-time scheduling,

deployment, admission control, and communication solutions can be developed to

provide probabilistic QoS guarantees.

1.1.2 Probabilistic Event Detection Delay Analysis

Event monitoring is another important service provided by WSNs beside the packet

communication. In typical event monitoring applications, numerous sensor nodes are

deployed in the space, and operate collaboratively to monitor, report, and react to

various physical events. When an event of interest occurs, it is detected by sensor

nodes. Reports are then generated and forwarded to a sink via multi-hop commu-
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nication. Based on the received reports, the sink may detect the event and perform

appropriate actions, e.g., inform the forest administration in case of a fire. For such

systems, reports must be delivered to the sink in a timely manner. Therefore, one

of the most important performance metrics for event monitoring WSNs is the event

detection delay [39], i.e., the delay between when an event occurs in the physical

world and when a sufficient number of packets are delivered to the sink. Clearly,

the event detection delay consists of two parts: the discovery delay for individual

nodes to sense and detect the event, and the delivery delay for the network to relay

reports to the sink. Analyzing the event detection delay is a crucial task for real-time

WSN applications, which require predictable event detection delay guarantees to be

provided by the network.

Traditional event detection delay analysis [12, 32] cannot capture the statistical

characteristics of the event detection delay. Additionally, the event detection delay

analysis is more complex than communication delay analysis in that, as event reports

from individual nodes can be unreliable, it is more desirable to detect an event col-

lectively from multiple reports generated by multiple sensor nodes [2, 39]. Thus, an

event is generally considered to be detected only when a given number, n, of reports

are received by the sink [38, 105].

To address these challenges, a probabilistic analytical framework is developed in

this work to capture the delay characteristics of event detection in large-scale 2-

D WSNs. A spatio-temporal fluid model is developed to derive the distribution of

event detection delay. Accordingly, the mean event detection delay and soft-delay

bounds for event detection can be modeled. The soft-delay bound (or p-delay bound)

for delay is defined as the delay within which an event is detected with a given

required probability p. Indeed, a lower p-delay bound indicates that the events can

be reliably detected within a lower delay. Hence, the network is more desirable
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for real-time applications. The empirical validations and simulation studies reveal

that the developed model is suitable for high density networks and low traffic rate

applications, common features of a large class of WSN applications.

Motivated by the fact that queue build up in low-rate traffic is negligible, a lower-

complexity model is also developed. This model extends the delay analysis for single

packets, and derives the event detection delay by first obtaining the end-to-end delay

for each packet. This approach requires lower computational power than the first

model by reducing the computational complexity from O(A) to O(
√
A), where A is

the area of the network.

1.1.3 Probabilistic Energy Consumption and Lifetime

Analysis

In most Wireless Sensor Network (WSN) applications, nodes are powered by batteries,

and replacing the batteries is usually a tedious work. When energy is depleted, nodes

become inactive, losing their sensing and communication functionalities. Therefore,

providing adequate lifetime is an important QoS in WSNs.

Accurately characterizing increasingly complex energy-saving techniques [5, 6] is

challenging task. At the MAC layer, periodic sleeping based protocols [11, 78, 100]

have been developed, where nodes are forced into sleeping mode periodically, while

still maintaining network connectivity. At the network layer, energy-aware routing

protocols [49, 83, 95] are also utilized to further reduce the energy consumption.

Complicated network activities in multiple protocol layers necessitate a comprehensive

and generic model to accurately evaluate the energy consumption in WSNs.

Traditionally, energy analyses are focused on the average power consumption.

For example, in studies proposing the aforementioned energy-efficient WSN protocols
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[11, 49, 78, 83, 95, 100], attempts to reduce the average energy consumption are made.

Moreover, average energy consumption is the main focus in existing generic energy

analysis models [42, 97]. Existing lifetime analysis studies, such as [48], also provide

models for the average lifetime. However, due to the random nature of the wireless

environment, in critical applications where a highly reliable network is required, only

knowing the average energy consumption and average lifetime is insufficient.

Instead of average energy consumption and lifetime, their probabilistic distribu-

tions is investigated in this work. The distribution of energy consumption and lifetime

captures the probability that the consumed energy within any given period is lower

than a given value, and the probability that the lifetime is longer than a given pe-

riod. This allows making trade-offs between the desired lifetime and the probability

to achieve the lifetime. A Markov process-based model is developed to analyze the

distributions of energy consumption and lifetime in WSNs. It is shown that when the

given period is large enough, energy consumption converges to a Normal distribution.

The analysis is validated by realistic testbed experiments and extensive simulations.

1.1.4 Probabilistic Network Optimization

Given the developed analytical framework, a natural question is how to exploit the

analysis to aid network design. This question generally is equivalent to an optimiza-

tion problem. In the evaluations of the probabilistic analysis, we use the framework

to demonstrate the relationship between QoS performance metrics and network pa-

rameters. Indeed, requirements on different QoS metrics can conflict with each other,

and tradeoffs must be made to provide optimal services. Therefore, an optimization

framework that captures all QoS metrics is needed.

In this work, an important part of the developed analytical framework is a prob-
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abilistic optimization framework that captures various QoS metrics. As shown in

Figure 1.1, the framework is based on the analysis for key QoS metrics, such as the

end-to-end delay and the network lifetime. The main purpose of the optimization

framework is to demonstrate how to make decisions on choosing the optimal network

parameters according to application requirements.

Beside the probabilistic metrics, We also investigate deterministic performance

metrics that are not necessarily analyzed with a probabilistic approach in this dis-

sertation, for example, the traffic throughput in monitoring applications. Moreover,

we are interested in a set of network parameters as control variables, such as the

network density, the traffic generation rate, and the duty cycle. We then formulate

the probabilistic optimization problem as to find the minimum or maximum value for

an objective metric, given a set of probabilistic or deterministic constraints on QoS

performance metrics.

To solve the formulated probabilistic optimization problem, a heuristic technique

that utilizes multiple local searches is developed. Using this technique in a case

study, the optimal network parameters are investigated for a WSN with the anycast

protocol. Extensive numerical results are obtained to validate the accuracy of this

technique. From the optimization results, trends and insights about the tradeoffs in

network designs are obtained.

1.2 Key Contributions

The key contributions of this dissertation are summarized as follows.

• Formal Definition of Probabilistic QoS Metrics

In this work, we formulate formal definitions of probabilistic QoS performance

metrics in WSNs. The important metrics discussed in this work are: the end-to-
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end delay distribution, the event detection delay distribution, and the network

lifetime distribution. As an intermediate step to investigate these metrics, two

additional fundamental metrics are also defined, i.e., the single-hop delay dis-

tribution and the single-node energy consumption distribution.

• Analytical Framework to Evaluate the Probabilistic QoS Metrics

A probabilistic analytical framework is proposed to evaluate the QoS perfor-

mance metrics. Extensive testbed experiments and computer simulations are

conducted to validate the accuracy of the framework.

• Insight of How Network Parameters Affect the QoS Performance

Using the proposed analytical framework, an optimization framework is also

proposed to derive the optimal network and protocol parameters. This frame-

work can be exploited to aid the design and evaluation of network parameters

and protocols before actually deploying the networks.

1.3 Dissertation Organization

This dissertation is organized as follows. In Chapter 2, the methodology of the

probabilistic QoS analysis and optimization framework is discussed, including the

system models, approaches, case studies, and validations. Then, each of the four

major parts in this dissertation is presented in individual chapters. The probabilistic

end-to-end delay analysis is provided in Chapter 3. The probabilistic analysis of event

detection delay is described in Chapter 4. Then, the probabilistic energy consumption

and lifetime analysis is developed in Chapter 5. In Chapter 6, the probabilistic

network optimization framework is described. Finally, conclusions are given and

open research problems are provided in Chapter 7.
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Chapter 2

Methodology of the Probabilistic

QoS Analysis

In this chapter, the methodology of this dissertation is described in the following as-

pects. First, the system models, including the network topology model, the wireless

channel model, the traffic pattern models, are presented in Section 2.1. Then, the

approaches and techniques used in the analysis are briefly discussed in Section 2.2.

These include the node-level analysis using a discrete-time Markov process (DTMP),

and network-level spatio-temporal fluid models. The third aspect is the case studies

conducted to validate our framework. We present two different scenarios of case stud-

ies in Section 2.3 with different MAC and routing protocols: a TinyOS CSMA/CA

MAC protocol combined with routing protocols with static routing paths, and an

Anycast cross-layer protocol. These case studies are conducted using testbed exper-

iments and simulations, for which the setup and techniques are described in Section

2.4.
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2.1 System Models

In our analysis, we consider a network composed of sensor nodes that are distributed

in a two-dimensional (2-D) field. Sensor nodes communicate with each other through

a multi-hop route in the network. Each of the sensor nodes are capable of generating

packets, which have specific destinations through multi-hop communications. More-

over, each node can also relay packets sent from other nodes to progress towards their

destinations. Whenever a packet is generated or received for relay when a node is in

the process of transmitting a packet, the new packet is temporally stored in a queue

located in the node memory. Due to limited storage resources, the queue capacity is

usually limited. Moreover, most nodes are powered by batteries with limited energy

capacities.

2.1.1 Network Topology

The network topology in WSNs is determined by the way sensor nodes are deployed.

We consider a network of N sensors that are distributed in a 2-D field. Two different

types of network deployments are investigated.

• Random deployment : Individual sensor nodes are located randomly in a 2-D

plane.

• Deterministic deployment : As a special case, we consider deployments, where

sensor nodes are located at deterministic locations, e.g., grid topology.

In both cases, each node is identified according to its location x = (x, y) in Cartesian

coordinate systems, or x = (r, θ) in polar coordinate systems, and is characterized by

its input traffic rate, λ(x), queue length, M(x), and battery capacity, C(x).
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2.1.2 Channel Model

Due to the channel noise and predominant shadowing/fading effects in the wireless

channel, the communication between two nodes cannot be assumed to succeed all

the time. Instead, there is a chance, which is measured by the packet error rate

(PER), that the packet transmission fails, whenever one or more bits in the packet

are corrupted. In this work, a log-normal fading channel model is considered [107] to

derive the PER, as summarized in the following.

In the model, the packet error rate depends on the transmission distance, trans-

mission power as well as random multi-path fading and shadowing effects. Therefore,

the packet error probability is a random variable (r.v.). In this work, we use the

mean value of this r.v. to represent the packet error rate PER. The accuracy of this

assumption is validated by our testbed experiment results throughout this disserta-

tion. Accordingly, the r.v. received signal to noise ratio (SNR) Ψ(d) at the receiver

is a function of transmission distance d, and is given by

ΨdB(d) = Pt − Pn − PL(d0)− 10η log10

(
d

d0

)
+Xσ, (2.1)

where Pt is the transmit power, and Pn is the noise power in dBm. PL(d0) is the path

loss at a reference distance d0, η is the path loss exponent, and Xσ is the random

shadow fading component, which is modeled by a zero-mean Normal distribution with

standard deviation σ. Therefore the probability that the received signal SNR ΨdB(d)

is higher than some value ψ is

Pr(ΨdB(d) > ψ) =
1√
2π

∫ ∞

ψ

exp

(
−β

2(d, ψ)

2σ2

)
dψ = Q

(
β(d, ψ)

σ

)
, (2.2)
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where

β(d, ψ) = ψ + Pn − Pt + PL(d0) + 10η log10

(
d

d0

)
. (2.3)

The expected bit error rate is a function of the expected received SNR, and then,

the expected packet error rate is determined by the expected bit error rate. The

derivation depends on the modulation and coding approaches the radio transceivers

use. More detailed information about the derivations for typical transceivers are listed

in [107].

In the analysis throughout this dissertation, this expected packet error rate, PER,

is calculated, and is used to characterize the channel condition.

2.1.3 Traffic Pattern Models

In this dissertation, the traffic pattern is defined by the interarrival time distribution

of packets, which is further determined by the application and protocols used. In a

typical multi-hop WSN, the input traffic at each node consists of two parts: locally

generated packets and relay packets. Locally generated packets consist of the local

information sampled by the sensors, whereas relay packets are those received from the

neighbors, and should be forwarded towards their final destinations. The inter-arrival

time of the locally generated packets depends on the application requirements, with

which the sensor data are generated, and the relay traffic depends on the network

parameters.

To lay the foundation of the analysis in this dissertation, in the following, we aim

to find the inter-arrival time of the locally generated packets and relay packets at each

node for various applications. Specifically, two types of applications are considered:

event-based applications and monitoring applications, depending on how the sensor
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data is generated.

2.1.3.1 Locally Generated Traffic Pattern: Event-Based Applications

For event-based applications, nodes send data only if a certain physical event of inter-

est occurs, e.g., the temperature exceeds a given threshold. We model the interarrival

time of locally generated packets by the Geometric distribution. This is motivated by

the following. In such applications, the generated data are often sporadic. Consider-

ing such physical events do not occur very frequently, the probability that the event

occurs at any time is governed by a Poisson process, and the inter-arrival time is

exponentially distributed. In a discrete time model with a small enough time unit Tu,

the probability that more than one event occurs in a time unit is negligible. Thus,

assuming only one event occurs in a time unit, a Bernoulli process is used to ap-

proximate the Poisson process in each time unit, according to the definition of the

Bernoulli process [67, Ch. 6].

2.1.3.2 Locally Generated Traffic Pattern: Monitoring Applications

For monitoring applications, nodes repeatedly detect the physical environment using

their sensors. Thus, the generated data is periodic. Accordingly, the locally generated

traffic can be modeled using a constant bit rate (CBR) model, i.e., the inter-arrival

time of locally generated traffic is a constant Te.

2.1.3.3 Relay Traffic Pattern

For the relay traffic, we approximate the interarrival time distribution based on em-

pirical measurements. Testbed experiments have been conducted to estimate the

distribution of the inter-arrival time of packets in a 10-hop chain network for both

types of applications, i.e., monitoring and event-based for low and high traffic rates.
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Figure 2.1: The distribution of inter-arrival time for different types of traffic in a
10-hop chain network.

In each experiment, each node uses the TinyOS CSMA/CA MAC protocol and gener-

ates packets according to either a CBR model (monitoring), or a Bernoulli process in

each time unit of 0.1 s (event-based). Each node transmits its generated packets and

the received packets from its neighbors to the next node toward the end of the chain.

The distribution of the inter-arrival time of the packets is recorded at the end of the

chain. The following combinations of the locally generated traffic rate and pattern

are examined:

(a) 0.4 pkt/s (low traffic) and CBR;

(b) 4 pkt/s (high traffic) and CBR;



17

(c) 0.4 pkt/s (low traffic) and Bernoulli process;

(d) 4 pkt/s (high traffic) and Bernoulli process.

The empirical cdf of the inter-arrival time is shown in Figure 2.1 along with an

exponential distribution model for four cases1. The results reveal that except for

the light periodic traffic case shown in Figure 2.1(a), exponential distribution closely

models the inter-arrival rate. The light periodic traffic and other types of traffic,

such as bursty traffic, can be captured by extending our queueing model to adopt a

Markov Arrival Process (MAP) [69, Ch. 5], and are left as a future research topic.

Accordingly, in our discrete-time model, we consider that the inter-arrival time for

event-based applications follows a Geometric distribution, and define the traffic rate

λ at some node to be the probability that a new locally generated packet or relay

packet arrives during a time unit Tu.

2.2 Approaches

The analytical framework in this dissertation utilizes a bottom-up approach in two

levels. First, at the node level, the single-hop delay distribution, the single-node

energy consumption, and the single-node lifetime distribution are obtained. Then,

the single-hop delay distribution and the single-node lifetime distribution are used

to obtain the end-to-end delay distribution, the network lifetime distribution, and

the event detection distribution at the network level. Finally, the distribution of

end-to-end delay, network lifetime, and event detection delay are used as objective or

constraint metrics in the probabilistic optimization framework.

1The exponential distribution shown in the figures are chosen such that their mean equals the
measured inter-arrival times.
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2.2.1 Node-Level Analysis

The framework at the node level is based on a Discrete-Time Markov Model. Each

node is modeled according to a first-come-first-serve queuing model, which is charac-

terized by its packet arrival process and service process. In the proposed model, time

is divided into time units with duration Tu. The packet arrival process is character-

ized by a Bernoulli process in each time unit, as discussed in Section 2.1.3. Moreover,

a Discrete Time Markov Process (DTMP) is used to model the service behavior of

the protocol with time unit, Tu. Therefore, the service time is Phase-Type (PH)

distributed [68]. Considering a single processor at each node and a queue capacity of

M , the resulting model is a discrete time Geom/PH/1/M queueing model, and the

system is essentially governed by a Quasi-Birth-Death (QBD) process [68].

A layered discrete-time recurrent Markov chain, {Xn}, is used to model the DTMP

at each node, with states and transitions among states representing the node oper-

ations. The communication protocols of each node are represented by transitions

among the states. This Markov chain {Xn} is directly used to derive the energy

consumption distribution for each node. Then, the single-hop delay distribution is

obtained as the absorption time of {Yn}, an absorbing variation of {Xn}. The de-

tailed models for the derivation of node-level analysis will be presented in Chapters

3 and 5, respectively.

2.2.2 Network-Level Analysis

In the proposed analytical framework, when random node deployment is considered,

the location of each individual node cannot be determined for analysis purpose. Thus,

the interaction among nodes is intractable using traditional deterministic analysis ap-

proaches. Motivated by the fact that the individual node properties are insignificant
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when network-level performance is concerned, the network is represented by a contin-

uous fluid entity distributed in the entire network area. Accordingly, the complexity

of the model can be greatly reduced. The entire network area is divided into very

small area elements, and according to the density of the network and the size of the

area element, each area element is treated as if it has a fraction (i.e., not necessarily an

integer number) of nodes. Moreover, the single-hop delay distributions among these

area elements are calculated, and are used to calculate end-to-end delay distributions;

the single-node lifetime distributions for nodes in each of the area elements are used

to calculate the network lifetime distribution.

Furthermore, when performance of services involving a group of packets are con-

sidered, the traffic streams are treated in a similar way. One example is the analysis

of event detection delay, where multiple report packets must be received by the sink

before the event is detected. In such scenarios, the delay of individual packets is only

a part of the event detection delay. Thus, the traffic to the sink is not considered

as individual packets, but continuous packet flows. The average fraction of packets

transmitted during any given time period is obtained, and is used to calculate the

event detection delay.

By utilizing this spatio-temporal fluid model, the spatial node distribution and

temporal packet distribution are approximated by their respective average processes.

As a result, the complexities of the problems in both spatial and temporal domains

are reduced, and the problems become tractable. Note that essentially these approxi-

mations are to ignore the randomness in the concerned distributions. This seemingly

contradicts our goal to analyze the QoS metrics for their probabilistic characteris-

tics. However, these approximations are necessary to make the problems tractable.

Moreover, we try to limit such approximations to the minimum. For example, in the

probabilistic analysis of single packet delay and single-node lifetime, the temporal
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fluid model is not used.

In Chapters 3, 4, and 5, the details of the spatio-temporal fluid model is provided.

The accuracy of this model is validated by the testbed and simulation evaluations.

2.2.3 Multi-Initial-Point Global Optimization Technique

In the probabilistic QoS optimization problem, the QoS metrics can be the objec-

tive function or constraint functions. However, due to the generality of the network

topology and communication protocols assumed for the analysis framework, without a

priori knowledge of the topology and protocol, the probabilistic QoS metric functions

cannot be considered convex, nor can they easily be converted to convex problems.

Thus, solving the optimization problems is non-trivial. The following heuristic-based

global optimization technique is developed to tackle this issue.

In our proposed solution to the problem, Nsearch local-optimum searches are con-

ducted with random initial search points. In each of the multiple searches, the initial

set of network parameters is determined by randomly choosing sets within the pa-

rameter space, until the set of parameters satisfies all constraints. Starting from this

set, a derivative based local optimum search is conducted. Then, the global optimum

is approximated as the best result in all the Nsearch optimum values found by each of

the local searches. In the case when one or more of the local searches cannot converge

due to non-convexity, the search procedures are terminated.

By utilizing this multiple local search technique, the problem is solved without

prior knowledge about the topology and protocol. Moreover, the optimum found by

this technique asymptotically is always the global optimum when Nsearch is large. By

adjusting the value of Nsearch, a trade-off can be achieved between the accuracy of the

result and search time.
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Figure 2.2: The transmission process for a packet with the TinyOS CSMA/CA MAC
protocol.

This multi-initial-point global optimization technique is presented in Chapter 6.2.

2.3 Case Studies

Our proposed framework is designed to be generic and can be parameterized to ana-

lyze WSNs with practical MAC and routing protocols. To illustrate how the frame-

work can be applied to the analysis for practical protocols, in this dissertation, two

MAC protocols, i.e., the TinyOS CSMA/CA protocol (i.e., B-MAC [78] without Low

Power Listening) and the Anycast protocol [49, 52, 58, 76, 95], are discussed as case

studies in the analysis for each part in the analytical framework. Moreover, a basic ex-

ample on a simple protocol is provided in Chapter 3 when the Discrete-Time Markov

Model is first explained in detail. This example serves the purpose of explaining how

the Markov model is constructed, and is not summarized here.

It should be noted that, in this dissertation, it is assumed that no in-network

processing, such as data aggregations are employed. The probabilistic QoS analysis

for WSNs with in-network processing could be a direction for future research. In the

following, the two protocols are explained in detail.
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2.3.1 TinyOS CSMA/CA MAC Protocol

The TinyOS default CSMA/CA protocol [91] is widely adopted by applications due

to its simplicity and the popularity of TinyOS. The transmission process for a packet

with this protocol is shown in Figure 2.2. When each node has a packet to send,

a random initial backoff is conducted to arbitrate with other nodes. Then, similar

to the IEEE 802.15.4 protocol [45], a two-slot Clear Channel Assessment (CCA) is

performed, followed by the packet transmission if both CCAs detect the channel to be

clear. If the channel is busy in either CCA, a random congestion backoff is conducted

and the channel is sensed again. After the transmission is completed, the node waits

for the acknowledgment from the receiver until ACK timeout.

If the acknowledgment is received, the packet is then transmitted successfully.

Otherwise (ACK timeout), the transmission process is performed again beginning

with the initial backoff. The process is repeated until either the transmission is

successful, or a maximum number of transmission attempts, Ntx, is reached.

The TinyOS CSMA/CA protocol is a simple but representative CSMA/CA pro-

tocol. The protocol itself does not define any routing policy, and requires additional

routing protocols. In this dissertation, for networks with the TinyOS CSMA/CA

protocol, we focus on the routing protocols with static routing paths, or the steady-

state period of dynamic routing policies, for example, the protocols that utilize the

Geographic routing technique [106]. In such protocols, for a particular packet, a node

forwards it to any of its neighbor nodes with a probability, which does not change

rapidly over time.
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Figure 2.3: The transmission process and routing path for a packet with the anycast
protocol.

2.3.2 Anycast Cross-Layer Protocol

To save communication energy, recent research has been focused on MAC protocols

with duty cycle operations [11, 78]. In such protocols, nodes periodically enter active

and sleeping states, and consume significantly less energy compared to nodes with

MAC protocols that require the nodes to be always active. As a result of constantly

entering a sleeping state, the communication delay is often increased. To counter

this drawback, opportunistic routing techniques, particularly anycast protocols, are

utilized along with a high node density to exploit node deployment redundancy [49,

52, 58, 76, 95]. The anycast technique is a cross-layer approach that exploits both

temporal and spatial efficiency, with operations based on duty cycle sleeping and

selective forwarding according to the location or the operation of neighbor nodes.

With the anycast technique, if a node has packets to send, it first broadcasts a series

of beacon messages. Then, one of the responding neighbors is chosen as the next-hop

node according to predefined rules (e.g., the first node that responds, or the closest

node to the destination). Finally, the sender forwards the data packet to the chosen

neighbor.

While there is no single dominantly used anycast technique in WSNs, in this

work, we investigate the following representative protocol (thereby referred to as the
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“anycast protocol”).

In the anycast protocol, sensor nodes report their readings to the sink, which is

located at the center of the circular plane, through multi-hop routes in the network.

The nodes (excluding the sink) turn off their radio periodically to save energy. When

a node x has a packet to send, similar to the preamble packets in X-MAC [11], it starts

to repeatedly transmit Request-to-Send (RTS) beacon packets based on a CSMA/CA

manner, i.e., the channel is sensed before the beacon transmission. If the channel is

busy, a random backoff is performed and the channel is sensed again. As shown in

Figure 2.3, when any other node x′ in the transmission range is awake and hears the

packet, it checks for the following criteria: 1) node x′ is closer to the sink than x,

and 2) the signal-to-noise ratio (SNR) of the received RTS packet, ψ, is greater than

some predefined threshold ψth. If both criteria are met, node x′ sends a Clear-to-

Send (CTS) packet. Node x then chooses the first node that sends a CTS packet

as the next-hop node and transmits the data packet to it. Successful data packet

transmissions are acknowledged by the receiver, otherwise the sender retransmits the

data packet until successful.

To reduce the waiting time for the packets spent in the queue and balance the

energy consumption in the network, in the protocol each node responds to beacon

packets only when it does not have packets to send. Considering the sink is awake all

the time, if a node closer than a distance threshold rth to the sink transmits beacons,

it is assumed that no node except the sink will respond. Here rth is chosen such that a

high SNR is almost always guaranteed. Moreover, nodes go to sleep when they finish

transmitting all packets in the queue. As a result, compared to non-transmitting

nodes, the active period is shorter. In cases where transmission energy consumption

is higher than listening, this helps balance energy consumption among nodes.
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2.4 Testbed and Simulation Validations

The proposed analytical framework in this dissertation is validated extensively us-

ing both testbed experiments and simulations. Conducting testbed experiments for

random deployment requires hundreds of realizations of the random topology before

valid statistics can be gathered. Therefore, it is infeasible to validate our model solely

using testbed experiments for random deployment. Simulations run much faster than

testbed experiments, and can also run in multiple computers in parallel, thus reducing

validation time in larger scale and longer duration. Hence, the testbed experiments

are conducted for two purposes: to validate the proposed framework in a realistic

setting, and to validate the accuracy of computer simulations.

2.4.1 Testbed Experiments

Our testbeds are located in the Cyber-Physical Networking Laboratory (CPN Lab)

of UNL. Two different testbeds are used. The first one is a testbed in the ceiling

of the CPN Lab, consisting of USB sockets connected to a central computer, as

shown in Figure 2.4. Sensor nodes are connected to the USB sockets. The testbed

supports various types of off-the-shelf sensor nodes, including TelosB motes and Mica

series motes. The other testbed is a lightweight frame that is suspended in the CPN

Lab, with strings and wooden sticks forming a grid, as shown in Figure 2.5. Sensor

nodes can be hung below the frame using the grid as anchors. In both testbeds,

Crossbow TelosB motes are used. They are placed in the testbed at specific locations

according to the experiment requirements. The delay of communication and the

energy consumption of nodes are measured using the techniques described below.



26

Figure 2.4: The testbed in the ceiling of the CPN Lab.

2.4.1.1 Measuring the Communication Delay

To measure the end-to-end communication delay from a source node to the destination

node, programs running in the source node and destination node are modified. When

the source node generates a packet, an electric pulse is simultaneously generated by

the program in the source node, and is sent to the destination node through a pair of

wires. The destination node starts a timer when it receives a pulse, and then waits

for the corresponding packet. When the packet is received by the destination node,

the duration after the reception of the pulse is recorded as the packet delay (the time

spent on the signal transmission over the wires is ignored). This technique does not

require destination nodes to know the clock information of the source nodes, and thus

eliminates the need for synchronization among all the nodes.
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Figure 2.5: The suspended frame testbed in the CPN Lab.
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Figure 2.6: The technique used to measure the current drawn by each node. A 1 Ω
resistor is placed in the circuit, and a NI-USB 6210 DAQ module is used to log the
current and the voltage of the battery.

2.4.1.2 Measuring the Energy Consumption of Nodes

To measure the energy consumption of each node in a given period of time, the current

drawn by each node is measured using NI-USB 6210 data acquisition (DAQ) modules

[89]. In both testbeds, as shown in Figures 2.6 and 2.7 for each node, a 1Ω resistor

is placed in the circuit loop, and the current drawn from the battery is obtained by
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Figure 2.7: The energy monitoring circuitry. A small PCB board, on which a 1-Ohm
resistor is soldered on, is used to insert the resistor into the note circuitry.

measuring the voltage drop over the resistor. The voltage drop is measured using

DAQ modules at 10kHz, converted to the current, and logged for 24 hours. Since

in practice, the energy charge and consumption is usually measured in terms of the

product of the current and time duration, solely measuring the current is enough to

estimate the energy consumption of nodes. However, the testbeds are also able to

sample the battery voltage simultaneously, as shown in Figure 2.6. Logged readings

of the current and the voltage for each node are sent to the central computer for data

analysis.

2.4.2 Simulations

The computer simulations are performed using TOSSIM [56], a mote simulator based

on TinyOS. Actual node programs can run in the TOSSIM simulation environment

with little or no modifications. To obtain statistically valid results from simulations,

a large number of simulation trials needs to be completed. This motivates us to run

the simulations on FireFly [43], a supercomputer located at the Holland Computing
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Center of University of Nebraska-Lincoln.

To speed up TOSSIM simulations and obtain the simulation results for lifetime-

scale durations, several techniques are utilized. First, the different independent trials

of simulations are conducted in parallel on different processing units of the supercom-

puter. Second, TOSSIM code is modified such that all log and debug information is

reduced, except for the minimum necessary log of the energy consumption. This re-

duces the time spent on time-consuming I/O operations. Third, in some experiments

that require very long simulation durations, the realistic channel model in TOSSIM

is replaced by a simplified channel model. The detailed discussion on these techniques

and the results are provided in Chapter 5.

In the following chapters, the probabilistic end-to-end delay, the probabilistic

network lifetime, and the probabilistic event detection delay are analyzed in detail,

followed by the probabilistic QoS optimization framework.
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Chapter 3

End-to-End Delay Distribution

In this chapter, the end-to-end communication delay distribution is analyzed. The

goal of this chapter is to provide a comprehensive analytical model for distribution

of end-to-end delay in WSNs. Accordingly, a comprehensive and accurate cross-layer

analysis framework is developed to characterize the end-to-end delay distribution in

WSNs. The effects of heterogeneity in WSNs on latency is captured in terms of

channel quality, transmit power, queue length, and communication protocols. The

developed framework highlights the relationship between network parameters and the

delay distribution in multi-hop WSNs.

In the following, the related work in this area is summarized in Section 3.1. In

Section 3.2, the end-to-end delay distribution problem is formally defined, and an

overview of the proposed Markovian model is provided. The detailed derivation of the

single-hop delay distribution is described in Section 3.3, followed by the derivation of

the end-to-end delay distribution in Section 3.4. Then, case studies for the CSMA/CA

MAC protocol and the anycast protocol are provided in Section 3.5 and Section

3.6, respectively. Experimental results are provided in Section 3.7 to validate the

developed model. Finally, the conclusions of this chapter is given in Section 3.8.
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3.1 Related Work

The problem of probabilistic end-to-end delay analysis has attracted a large amount

of research in recent years. The concept of Network Calculus [20] has been extended

to support probabilistic delay bounds in [12, 32, 51, 81]. Network calculus and its

probabilistic extensions are based on a min-plus algebra to provide traffic curves

and service curves, which are deterministic (or statistical) bounds of traffic rate and

service time, respectively. In these studies, the worst case performance bounds are

analyzed. However, determining worst case bounds has limited applicability in WSNs

for three reasons: First, because of the randomness in wireless communication and

the low power nature of the communication links, worst case bounds do not exist in

most practical scenarios. Second, the large variance in the end-to-end delay in WSNs

results in loose bounds that cannot accurately characterize the delay distribution.

Finally, most applications tolerate packet loss for a lower delay of higher priority

packets since the efficiency of the system is improved. These motivate the need for

probabilistic delay analysis rather than worst case bounds.

Moreover, work on real-time queueing theory [55, 101] combines real-time theory

and queueing theory to provide stochastic models for unreliable networks. However,

these models consider heavy traffic rate (usually saturation mode), which is not ap-

plicable for WSNs. The approach in this dissertation is similar to real-time queueing

theory [55] in that a stochastic queuing model for the analysis is used. In contrast, the

focus of this dissertation is not on the real-time scheduling problem, which has been

discussed intensively in the literature [55, 57, 101]. Rather, it is aimed to provide an

analytical tool to help develop communication solutions.

Recently, the delay distribution of MAC protocols has been analyzed in a large

number of studies for wireless networks and WSNs, in particular. The access delay of
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several MAC protocols has been investigated including IEEE 802.11b DCF protocol

[8, 80, 87], IEEE 802.15.4 protocol [77, 79], and TDMA protocols [70]. However,

in these studies, a broadcast network is considered, where each node can hear the

transmission of each other. Moreover, in [8, 80, 87], saturated traffic is considered.

Consequently, the multi-hop communication effects due to hidden node problems and

the low traffic rate of WSNs cannot be captured.

The distribution of link layer retransmissions are modeled in [47]. While the

distribution of the number of retransmissions is obtained, the transmission time is

regarded as the same for each attempt. Hence, the resulting delay distribution model

does not consider the uncertainty due to random backoffs of CSMA/CA protocols.

In [98], the end-to-end delay distribution in a linear network is derived for homoge-

neous networks. However, this model assumes infinite queue length at each node,

which may not be practical considering the resource constraints of sensor nodes. A

probabilistic end-to-end delay and network lifetime analysis is given for WSNs per-

forming data aggregation in [35], but with the assumption that packet transmission

time is exponentially distributed. This assumption is inaccurate for most of the MAC

protocols commonly in use. Finally, in [30, 36, 74], empirical measurements are used

to provide probabilistic estimations for end-to-end delay. These solutions exploit on-

the-fly measurements but do not provide analytical results. Before this dissertation,

completely and accurately characterizing end-to-end delay in WSNs was still an open

problem.

In the following, the probabilistic end-to-end delay analysis is provided by first

defining the problems.
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3.2 Problem Definition and System Model

As described in Chapter 2, in our analysis, two types of network deployments, random

and deterministic deployments, are considered. In both cases, each node is indexed by

its location x. For a given network with a given MAC protocol and node parameters,

we are interested in the following two problems:

1) What is the probability distribution function (pdf ) of single-hop delay , fsh(x,y)(t),

between two nodes x and y for a new arriving packet?

2) Given the single-hop delay distribution, what is the pdf of the end-to-end delay,

fe2e(x,s)(t), between a node x and a sink located at s?

We consider a heterogeneous network for this analysis, where the heterogeneity

is defined in terms of channel conditions, the packet error rate, PER, traffic rate,

λ, queue length, M , maximum number of retransmission attempts, Ntx, and trans-

mission power, Ptx, with appropriate subscripts indicating the different values for

different nodes. In the following, we provide an overview of our solutions for the two

problems above and the detailed descriptions are deferred to Sections 3.3-3.4.

3.2.1 Single-hop Delay Distribution

Each node is modeled according to a queuing model, which is characterized by its

inter-arrival distribution and service process. More specifically, we model the traffic

inter-arrival according to a Geometric distribution as explained in Chapter 2. Fur-

thermore, a Discrete Time Markov Process (DTMP) is used to model the service

behavior, as stated in Chapter 2. Therefore, the service time is Phase-Type (PH)

distributed [68]. Considering a single processor at each node and a queue capacity of

M , the resulting model is a discrete time Geom/PH/1/M queueing model.

The communication system at each node is modeled as a discrete-time recurrent
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Markov chain, {Xn}. As shown in Figure 3.1(a), this DTMC has a layered structure.

Each layer i contains the part of the chain where there are i packets in the queue. The

communication behaviors of each node are represented by transitions among states

in {Xn}. Then, a second DTMC, {Yn}, which is the absorbing variant of {Xn}, is

used to obtain the single-hop delay distribution. The detailed explanation of these

DTMCs is provided in Section 3.3.

3.2.2 End-to-End Delay Distribution

With each hop modeled as a Geom/PH/1/M queue, the entire network is considered

as a queueing network. Nodes are interrelated according to the traffic constraints.

More specifically, the successfully transmitted traffic rate from one node should be

equal to the sum of the incoming relay traffic rate at each of the next-hop neighbors

of the node.

The topology of the queueing network depends on the routing protocol used. In

this dissertation, we focus on the class of routing protocols with which each node

maintains a probabilistic routing table for its neighbors, e.g., Geographic routing

protocols [3]. Nodes relay their packets to each of their neighbors according to a

probability in their routing tables. By first calculating the relay traffic and the single

hop delay distribution for each pair of nodes, the end-to-end delay is obtained using

an iterative procedure as will be explained in Section 3.4.

3.3 Single-hop Delay Distribution

The communication system at each node is modeled by a DTMC {Xn} and its absorb-

ing variant {Yn}. First, {Xn} is constructed to capture the equilibrium behavior of

the communication. Then, {Yn} is used to analyze the transient communication be-
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Figure 3.1: The structures of Markov chains (a) {Xn} and (b) {Yn}. Their building
blocks are also shown: (c) {Zn} and (d) {In}

havior after a specific packet arrives. The single-hop delay of the packet transmission

is then represented as the absorption time of {Yn}. In the following, the construction

of {Xn} and {Yn} are described in detail, and the single-hop delay distribution is

derived according to Theorem 1 at the end of this section.
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3.3.1 Constructing Markov chain {Xn}

The DTMC, {Xn}, as shown in Figure 3.1(a), is composed ofM+1 layers, where each

layerm (0 ≤ m ≤M) represents the state where there arem packets in the queue and

M is the queue capacity. These layers are of two different types, the quiescent layer,

{In}, and the communication layers, {Cn}m. The quiescent layer, {In}, (m = 0)

represents the quiescent process, during which the node does not have any packet

to send, and waits for new packets. The communication layers, {Cn}m (m > 0),

represent the communication process in which packets are transmitted. One or more

identical transmission attempts are conducted, until either the packet is successfully

transmitted, or the maximum number of transmission attempts, Ntx, is exceeded.

Accordingly, a layer m in {Xn} is denoted by {Cn}m, and is composed of Ntx blocks.

The b-th block in layer m is denoted by {Zn}m,b1. As shown in Figure 3.1(c), each

block models a single transmission attempt. The structure of {Zn} depends on the

MAC protocol used. Packets are dropped if they arrive at a full queue or if all Ntx

transmission attempts fail. Consequently, the v-th state in layer m and transmission

attempt b is denoted by Sm,b,v.

The traffic arriving at each node contains locally generated traffic and relay traffic.

While locally generated traffic can arrive at any time, the relay traffic can only arrive

when the node is listening. Therefore, the total traffic rate depends on the state of

the process. The locally generated traffic rate and the relay traffic rate for a node

is denoted by λlc and λre, respectively. Therefore, in the states where the node is

listening, the total traffic rate is λlc + λre, and it is λlc otherwise.

According to the MAC protocol employed, {In} and {Cn} are parameterized by

the following notations:

1In the following, we drop the indices m and b, where appropriate, to simplify the notation
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• PI and PC : the transition probability matrices among the states in {In} and

{Cn}, respectively.

• αI and αC : the initial probability vector for {In} and {Cn}, respectively.

• tsI and tsC : the probability vector from each state in {In} and {Cn} to complete

the quiescent process and the communication process successfully, respectively.

• tfC : the probability vector from each state in {Cn} to complete the communi-

cation process unsuccessfully.

• λI and λC : the packet arrival probability vector for each state in {In} and

{Cn}, respectively. Each element in the vectors equals to the probability of a

new packet arrival in a time unit when the process is in the corresponding state.

The Markov chain block for each transmission attempt, {Zn}, is characterized by

the following:

• PZ , the transition probability matrix among the states in {Zn},

• αZ , the initial probability vector for {Zn}, and

• tsZ and tfZ , the probability vector from each state in {Zn} to complete the

transmission attempt successfully or unsuccessfully, respectively.

The states and the transitions related to {Zn} depend on the MAC protocol employed.

For now, we assume that these matrices are known and the case studies to obtain them

for two different protocols are provided in Section 3.5 and Section 3.6. Accordingly,



38

the transition probability matrix among the states in a single layer {Cn} in {Xn} is

PC =



PZ tfZαZ 0

. . . . . .

PZ tfZαZ

0 PZ


, (3.1)

where the number of PZ blocks in PC is equal to Ntx, i.e, the maximum number of

attempts for each packet transmission. Similarly, the initial probability vector, αC ,

and the probability vectors, tsC and tfC to complete a layer in success and failure are

αC =

[
αZ 0 · · · 0

]
(3.2)

tsC =

[
tsZ tsZ · · · tsZ

]T
(3.3)

tfC =

[
0 0 · · · tfZ

]T
(3.4)

respectively.

The transition probability matrix, QX , of the entire Markov chain {Xn} can then

be found according to transitions between different states at each layer as explained

next.

For layer m, 1 ≤ m ≤M−1, the queue is not full. Whenever a packet arrives, the

process transits to a higher layer since the queue length increases. The probabilities

of such transitions are governed by the probability matrix

Au = (1λC)
T ⊗ PC , (3.5)

where 1 is a properly dimensioned matrix containing all 1’s, and ⊗ is the entry-wise
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product operator. λC and PC are parameterized according to the MAC protocol.

Note that element (v, v′) in Au represents the transition probability from the v-th

state in previous layer to the v′-th state in the upper layer, and other transition

probability matrices in the following are defined the similar way. The transition

probability matrix at the same level m, 1 ≤ m ≤M − 1, is

As = (1λC)
T ⊗ (tCαC) + (1− 1λC)

T ⊗ PC , (3.6)

where tC = tsC + tfC is the probability vector from each layer to complete the current

communication process regardless of success or failure. The first term in (3.6) captures

the case where a locally generated packet arrives at the same time unit in which a

packet service is completed. The second term in (3.6) is for the case where neither

service completion nor new packet arrival occurs during the time unit.

At layer m = M , the queue is full. Hence, new arriving packets are directly

dropped. Therefore, the transition probability matrix in this layer is Au +As.

When there is no packet arrival and the current packet service is completed, the

Markov chain transits to one layer below. The transition probability matrix from

level m+ 1 to level m, 1 ≤ m ≤M − 1 is

Ad = (1− 1λC)
T ⊗ (tCαC). (3.7)

The transition probabilities are similar when the quiescent layer is involved as
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shown below:

Au0 = λT
I αC , (3.8)

Ad0 = (1− 1λC)
T ⊗ tCαI , (3.9)

As0 = (1− 1λI)
T ⊗ (PI + tsCαI). (3.10)

When a new packet arrives while there is no packet in the system, the chain transits

from the quiescent layer to layer 1 according to Au0 in (3.8). When the service is

completed for the only packet in the system and no new packet arrives, the chain

transits from layer 1 to the quiescent layer according to Ad0 in (3.9). Finally, the

transition probabilities with which the node stays in the quiescent layer are given in

As0 in (3.10).

Using (3.5)-(3.10), the transition probability matrix QX for the entire recurrent

Markov chain {Xn}, can be constructed as follows:

QX =



layer 0 1 2 · · · M

0 As0 Au0 0

1 Ad0 As Au

2 Ad
. . . . . .

· · · . . . As Au

M 0 Ad As +Au


, (3.11)

where each non-zero block corresponds to the transition probability among all layers.

The duration of the time unit Tu is chosen to be small enough such that the probability

of having two or more transitions in a single time unit is negligible. Therefore, it is

only possible for {Xn} to have intra-layer transitions and inter-layer transitions to
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adjacent layers. Also note that the first row and column of blocks in QX corresponds

to the transition probabilities from and to the quiescent layer, respectively. Then, the

equilibrium state probability vector, π, for {Xn} is calculated by solving πQX = π

and
∑

i πi = 1, as described in the following.

Denote πm as the sub vector in π corresponding to the states in layerm. According

to [67, Ch. 9]:

πm = πm−1R, 2 ≤ m ≤M − 1, (3.12)

where R is a constant rate matrix. Since,

πm−1Au + πmAs + πm+1Ad = πm, 2 ≤ m ≤M − 1,

the following iterative computation is conducted to solve R:

R(n+1) = −Au(As − I)−1 − (R(n))2AdA
−1
s , (3.13)

where R(0) = 0. The iteration continues until there is a negligible difference between

R(n+1) and R(n). Consequently, considering πm = π1R
m−1, 2 ≤ m ≤ M − 1, π can

be solved for M ≥ 2, as follows:



π0 + π1(I −RM−1)(I −R)−1e+ πMe = eT

π0(As0 − 1) + π1Ad0 = 0

π0Au0 + π1(As − I +RAd) = 0

πM−1Au + πM(As +Au − I) = 0

(3.14)
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Figure 3.2: The structure of {Xn} for the simple example.

and for M = 1, as follows:


π0 + π1e = eT

π0(As0 − 1) + π1Ad0 = 0

π0Au0 + π1(As +Au − I) = 0

(3.15)

where e is a properly dimensioned column vector of all 1’s.

3.3.2 A Basic Example

In the following, we show an example protocol to illustrate how the Markov chain

{Xn} is constructed. In the example protocol, a node conducts a duty cycle operation

every 2 s. It first sleeps for 1 s and then listens on the channel for another 1 s.

If a packet is received during the listening period with a probability λre, or if a

local packet is generated in any period with a probability of λlc, the node attempts

to transmit the packet. The transmission attempt takes 1 s with a failure rate p,
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and the node persistently attempts to transmit the packet until successful. While

transmitting, the node cannot receive any packets, but can still generate packets.

The queue length is M = 2. For this protocol, a time unit of 1 s can be chosen since

all time periods are 1 s. Then, the quiescent process can be modeled by two states,

and the communication process can be modeled by one state, as shown in Figure 3.2.

The quiescent process, {In}, contains a sleeping state (SL) and a listening state (LI),

whereas the communication process, {Cn}, contains a single transmission state (TX).

Accordingly, PI ,PC ,αI ,αC , t
s
I , t

s
C , t

f
C ,λI and λC are found as:

PI =

 0 1

0 0

 , PC = p,

αI =

[
1 0

]
, αC = 1,

tsI =

[
0 1

]T
, tsC = 1− p, tfC = 0,

λI =

[
λlc λlc + λre

]
, λC = λlc, (3.16)

where tfC = 0 because the communication persistently attempts to transmit until suc-

cessful, thus it can never fail. Therefore, the blocks in QX (see (3.11)) are expressed

as

Au = λlcp, Au0 = [λlc λlc + λre]
T

As = λlc(1− p) + (1− λlc)p, As0 =

 0 1− λlc

1− λlc − λre 0


Ad = (1− λlc)(1− p), Ad0 = [(1− λlc)(1− p) 0]

(3.17)
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Case studies for two practical protocols, the TinyOS CSMA/CA protocol and the

anycast protocol, are provided in Section 3.5 and 3.6, respectively.

3.3.3 Absorbing time for {Yn}

To obtain the distribution of single-hop delay for a packet, consider a particular packet

that enters the system at time t = t0. The single-hop delay of the packet is the time

spent until it is transmitted or dropped. To derive the delay distribution, we use

another DTMC, {Yn}, as an absorbing variant of {Xn}. As shown in Figure 3.1(b),

in {Yn}, the quiescent layer of {Xn} is replaced by two absorbing states Ssucc and

Sfail, corresponding to the two cases where the packet is successfully transmitted and

dropped, respectively. In addition, all new packet arrivals are ignored since they do

not interfere with the service time of the packet concerned. Thus, the state transitions

occur only inside a layer or from layer m + 1 to m. The steps to obtain {Yn} from

{Xn} is explained in the following.

Before the packet arrives, the system is in one of the states according to the

equilibrium state probability vector, π. After the new packet arrives, if the queue is

full, the packet is immediately dropped. The probability of queue full is

pqf = πMAu1, (3.18)

where πM is the sub-vector in π corresponding to the M -th layer. Otherwise, the

packet is inserted into the queue. The probability vector that the node is in a specific

state after the new packet arrives is π′ = πQup
Y , where Qup

Y is the transition probabil-

ity matrix of {Yn} conditioned on the fact that the new packet arrives. Qup
Y is derived

from QX in (3.11) by replacing λI and λC with vectors of all 1’s in (3.5)-(3.10) and

replacing As +Au with As. Note that Au in the bottom-right block accounts for the
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transition that will cause a packet to drop because of a full queue. Then, π′ is the

initial probability vector for {Yn}.

Accordingly, the transition probability matrix for {Yn} is

QY =


1 0 0

0 1 0

tsY tfY PY

 , (3.19)

where the transition probabilities from and to the absorbing states Ssucc and Sfail

are listed in the first two rows and columns, respectively. The transition probability

matrix among the transient states, i.e., all states except Ssucc and Sfail, is given by

PY =



PC 0

tCαC PC

. . . . . .

0 tCαC PC


. (3.20)

This is obtained from (3.11) by removing the first row and first column of blocks, and

replacing λI and λC with vectors of all 0’s in (3.5)-(3.10) for each remaining block.

The transition probability vectors from each of the transient states to the absorbing

states are

tsY =

[
tsC 0 0 · · ·

]T
, (3.21)

tfY =

[
tfC 0 0 · · ·

]T
, (3.22)

respectively, where tsC and tfC are given in (3.3) and (3.4), respectively. Finally, since

a transition in {Yn} takes a time unit Tu, the following important results are directly
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obtained:

Theorem 1. The probability mass function (pmf) of the number of time units, K, a

packet should wait before being transmitted and dropped are

f s
K(k) = αYP

k−1
Y tsY , (3.23)

f f
K(k) = αYP

k−1
Y tfY , (3.24)

respectively, where αY = (π′
1,π

′
2, · · · ,π′

M), i.e., π′ without the elements correspond-

ing to the quiescent layer, and P k−1
Y represents the (k − 1)-th power of PY .

Proof. The theorem follows from [67, Ch. 9.5].

The pmf of the number of time units a packet should wait, regardless of being

transmitted and dropped, is obtained by adding f s
K(k) and f

f
K(k). Thus, the following

corollary is directly obtained.

Corollary 1. The pmf of single-hop delay, measured by the number of time units of

Tu, is given by

fK(k) = αYP
k−1
Y tY . (3.25)

Using this model, the probability that the packet is eventually delivered in success

can also be found, and is given by the following corollary:

Corollary 2. The delivery rate of a new arriving packet is

pdeli =
+∞∑
k=1

f s
K(k) = αY (I − PY )

−1tsY . (3.26)

Of interest, the first two moments of the successful single-hop delay, which are

widely used as the performance metrics in WSN applications, can also be derived.
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Corollary 3. The mean and variance of single-hop delay for a new arriving packet

are

µK =
αY (I − PY )

−2tsY
pdeli

, (3.27)

σ2
K =

αY (2(I − PY )
−3 − (I − PY )

−2)tsY
pdeli

− µ2
K , (3.28)

respectively.

The derivations are straightforward since

µK = E[K] =

∑+∞
k=1 k · f s

K(k)∑+∞
k=1 f

s
K(k)

, (3.29)

σ2
K = E[K2]− (E[K])2 =

∑+∞
k=1 k

2 · f s
K(k)∑+∞

k=1 f
s
K(k)

− µ2
K , (3.30)

where E[] represents expectation.

Next, the end-to-end delay distribution based on the single-hop delay distribution

analysis in this section is derived.

3.4 End-to-end Delay Distribution

The end-to-end delay distribution depends on the topology of the network and the

routing protocol used. For both random and deterministic deployments, the steady

state behavior of the routing protocol is considered. In the following, the end-to-end

delay distribution for the deterministic deployment is provided first.
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3.4.1 Deterministic Deployment

In a network with deterministic deployment, each node has a deterministic location,

and the forwarding probabilities among nodes is determined with the knowledge of

the locations. We consider a typical network setup for a common type of applications,

where a single sink is used. In such a case, the network is viewed as a directed acyclic

graph (DAG) [18]. Without loss of generality, this graph can be topologically sorted

so that a node with a larger index never transmits a packet to a node with smaller

index. In a network with N nodes, the sink node is denoted by index N .

Suppose in each time unit of Tu, each node i generates a local traffic of λlc,i to the

sink. Each packet is routed using a relay k ∈ Ci with probability pfwi,k, where Ci is the

set of potential relays from i to the sink. Thus,
∑

k∈Ci
pfwi,k = 1, ∀i. First, the average

relay traffic λ̄re,i in each time unit from node i is calculated by solving the following

equation system for every node:

λ̄re,i =
i−1∑
m=1

(λ̄re,m + λlc,m)p
fw
m,i pdeli,m,i, ∀i, (3.31)

and λ̄re,1 = 0, where pdeli,m,i is the probability that a packet is successfully delivered

from node m to i, as defined in (3.26). Then, since each node cannot receive packets

in transmission and sleeping states, the relay traffic rate in the states, in which the

node is capable to receive packets, is

λre,i = λ̄re,i/π
listen
i , (3.32)

where πlisten
i is the probability that i is in any state in which the node can receive

packets, and is the sum of the probabilities corresponding to all such states in πi. Ac-

cordingly, the input traffic rate vectors λI and λC of a node i can be found according
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to Section 3.3. Then, λI and λC are used in (3.5)-(3.10) to determine the single-hop

delay distribution, fsh(i,j)(t), between a pair of nodes i and j as discussed in Section

3.3.

Finally, the end-to-end delay distribution is given as

fe2e(i)(t) =
N−1∑
k=i+1

fsh(i,k)(t) ∗ fe2e(k)(t)pfwi,k + fsh(i,N)(t)p
fw
i,N (3.33)

where (∗) is the convolution operator. Our testbed experiments show that it takes

less than 2 minutes to obtain the end-to-end delay distribution between two nodes

in a network consisting of 16 nodes with TinyOS CSMA/CA MAC protocol. This

calculation time is affordable for protocol analysis.

For a more generic network, where there may be multiple sinks, the above proce-

dure can be extended to derive the end-to-end delay distribution. Suppose in each

time unit of Tu, each node i generates a local traffic of λlc,i,j to each destination j.

Each packet from i is routed to the destination j using a relay k ∈ Ni,j with probabil-

ity pfwi,k,j, where Ni,j is the set of potential relays from i to j. Thus,
∑

k∈Ni,j
pfwi,k,j = 1,

∀i, j. We first calculate the average relay traffic λ̄re,i,j in each time unit from node i

to destination j by solving the following equation system for every pair of nodes:

λ̄re,i,j =
∑

m∈Mi,j

(λ̄fm,j + λlc,m,j)p
fw
m,i,j pdeli,m,i, ∀i, j (3.34)

whereMi,j is the set of nodes that use i as the next hop to reach j, λlc,m,j is the locally

generated traffic from m towards j, pfwm,i,j is the probability that the routing policy

chooses i as the next hop for a packet from m to j. Finally, pdeli,m,i is the probability

that a packet is successfully delivered from nodem to i, as defined in (3.26). Therefore,

the overall average relay traffic rate of node i is found as λ̄fi =
∑

j λ̄re,i,j, and the relay



50

traffic rate in receiving-capable states is obtained by (3.32).

Then, the single-hop delay distribution, fsh(i,j)(t), is obtained for each pair of nodes

according to Section 3.3, and the end-to-end delay distribution, fe2e(i,j)(t), between a

node i and a sink j can be solved in an iterative way as follows:

f
(0)
e2e(i,j)(t) =fsh(i,j)(t),

f
(n+1)
e2e(i,j)(t) =

∑
k∈Ni,j

fsh(i,k)(t) ∗ f (n)
e2e(k,j)(t)p

fw
i,k,j + fsh(i,j)(t)p

fw
i,j,j. (3.35)

The iteration process terminates when the difference between two consequent it-

erations is negligibly small.

3.4.2 Random Deployment

For the random deployment, the nodes are located in the network according to a

Poisson point process with density ρ. The exact location for each node is stochastic

because of the randomness. Therefore, geographic routing protocols [3] are often used

due to their scalability and adaptability to the random geographic locations of the

nodes. In such protocols, instead of the routing probability pfwi,j between any pair of

nodes i and j, the routing probability between any pair of locations x and y, pfwx,y

can be determined.

A common scenario is also considered for the random deployment, where the nodes

in the network generate the same amount of local traffic to a sink. Moreover, each

node x forwards packets to the neighboring nodes within its feasible region Fx, i.e.,

the region in which nodes are closer to the sink, but are still in the transmission

range, as shown in Figure 3.3. Assume that the sink is located at the center of a

circular plane with a radius R. In this scenario, the end-to-end delay analysis can

take advantage of the symmetry of the topology as explained next.
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x

rx′

rx

x
′

sFxBx

Figure 3.3: The feasible region, Fx, and the infeasible region, Bx, of node x.

The entire circular plane is discretized into concentric rings indexed by their dis-

tance to the sink, r. Each node senses the physical events, and generates packets with

traffic rate λlc. By symmetry, the relay traffic λre,r is the same for all nodes in the

same ring r. In the following analysis, we assume a polar coordinates system with

the sink located at the origin.

As shown in Figure 3.3, for a node x located at x = (rx, θx), the relay traffic arrives

from any node y in the infeasible region Bx = Cx \Fx, i.e., the region in which nodes

are farther to the sink but are still in the transmission range. To derive the relay traffic

rate for x and other nodes in ring rx, consider the small area (rx : rx+∆r, θ : θ+∆θ)

around node x located at (rx, θ). Similar to the deterministic deployment, the relay

traffic rate λre,rx is given by

λre,rx = λ̄re,rx/π
listen
rx ,

λ̄re,rx =

∫
Bx
ρ(λ̄fy + λlc)p

fw
y,x pdeli,y,xdy

ρ∆r∆θrx
, (3.36)

where ρ is the network density of the Poisson node distribution, pfwy,x and pdeli,y,x are

similarly defined as pfwm,i and pdeli,m,i in (3.31), except that the nodes are indexed by
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their locations.

Finally, pfwy,x in (3.36) is the routing protocol-specific probability that the node at

y transmit packets to a node at x. A case study for the anycast protocol will be

provided in Section 3.6 to show how this probability is obtained.

Thus, according to (3.36), the traffic rate of node x at each state is determined.

Accordingly, the input traffic rate vectors λI and λC of node x can be found according

to Section 3.3. Then, the equilibrium state probability for the DTMC {Xn}, πrx is

obtained. Note that in (3.36), the traffic rate for nodes in ring rx depends on the

traffic rate and delivery rate for nodes in their infeasible region. Therefore, the single-

hop delay distribution is obtained first for nodes in the outmost ring, and then the

inner rings in the decreasing order of the ring radius.

By symmetry, the end-to-end delay distribution to the sink is the same for all

nodes with a same distance rx to the sink, and is obtained by

fe2e(rx)(t) =

∫
Fx

pfwx,yfsh(rx) ∗ fe2e(ry)(t)dy. (3.37)

The end-to-end delay distribution is found in the ascending order of the distance to

the sink.

Next, in Section 3.5, the TinyOS CSMA protocol is used as a case study to

show how the DTMCs, specifically, the single transmission attempt block {Zn}, are

constructed, and how the end-to-end delay distribution is obtained, in a deterministic

deployed network. Likewise, another case study of the anycast protocol is provided

to illustrate the end-to-end delay analysis in a randomly deployed network in Section

3.6.
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Figure 3.4: Markov chain structure for each attempt for TinyOS CSMA protocol.
Nmax

ibo and Nmax
cbo are the number of states representing the initial backoff and conges-

tion backoff, respectively.

3.5 Case Study: TinyOS CSMA/CA protocol

In this section, we illustrate how the single-hop delay distribution can be obtained

for a particular MAC protocol in a deterministically deployed network. We use the

TinyOS default CSMA/CA protocol [91], as described in Section 2.3.1. Several ex-

isting studies characterizing the CSMA/CA protocol in a broadcast network are dis-

cussed in Section 3.1. In this section, we refer to the framework in [79] for our analysis.

Since multi-hop traffic and the hidden node problem are not considered in [79], we

extend this analysis to the multi-hop case. Note that our aim in this section is not

to propose yet another analysis of the CSMA/CA protocol. Instead, we illustrate

how the existing models of MAC protocols can be extended through our framework

to model the end-to-end delay distribution.

3.5.1 Markov Process Overview

With the TinyOS CSMA/CA protocol, nodes can start transmission at any time

when a packet arrives. Therefore, the quiescent layer {In} contains only one state,

denoted here as Sidle. Moreover, the Markov chain, {Zn}, that models each transmis-
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Figure 3.5: The transmission process for a packet with the TinyOS CSMA/CA MAC
protocol. Figure 2.2 is redrawn here fore convenience.

sion attempt is depicted in Figure 3.4. Before each transmission, the packet in the

queue is transferred from the microcontroller to the transceiver. The time needed for

such transfer differs for various transceivers but is not negligible. Our experiments

with TelosB nodes suggest that the durations of loading time before and after radio

transmission are constant and are approximately 1.7 ms and 2.0 ms, respectively.

Therefore, the data transfer delay is modeled by two additional state chains with a

length corresponding to the transfer duration. These chains are the first and the last

part of {Zn}, denoted by {TXn} and {RXn} in Figure 3.4, respectively.

Other parts of {Zn}, including the initial backoff, the congestion backoff, the

CCAs, the packet transmission, and the ACK timeout are constructed according to

Figure 3.5 (Figure 2.2 is redrawn here fore convenience).

3.5.2 Constructing the DTMC {Xn}

For each transmission attempt, the corresponding block of the Markov chain is de-

picted in Figure 3.4, which is characterized by three variables in the chain: p1 and

p2 are the probabilities that the node senses the channel busy in the first and second

CCA, respectively and pfx is the probability that a transmission attempt fails due to

either channel noise or collisions. For the derivations of their values, we first define

the collision area, Cx, of a node x as the area in which all the neighbors interfere with



55

node x. For two communicating nodes x and y, both nodes reside in the intersec-

tion of the collision areas of these nodes, i.e., {x,y} ∈ Cx,y, where Cx,y = Cx ∩ Cy.

Moreover, the collision area of x that is not in Cx,y is defined as Hx,y = Cy \ Cx,y,

which is the hidden node area of x with respect to y. Essentially, nodes that reside in

Hx,y cannot be heard by y. Similarly, the hidden node area of y w.r.t. x is denoted

by Hy,x.
2 The size of these areas |Cx,y|, |Hx,y|, and |Hy,x| can easily be obtained

according to the distance between x and y and their respective interference ranges.

Accordingly, the number of nodes in these areas are the product of their respective

sizes and the network density ρ.

Denote ϕx as the probability that node x is in the first CCA state. It is given

by the sum of all probability elements corresponding to the first CCA states in π.

Note that since heterogeneous network traffic is considered, ϕx may be different for

different nodes. Also denote p1 and p2 as the probabilities that the node senses the

first and the second CCA busy, respectively. Finally, denote PERx,y as the packet

error rate dependent on channel noise, which depends on the transmission distance,

transmission power, random multi-path and shadowing effects. In our model, we

define the expected packet reception rate for a pair of nodes according to the log-

normal fading model in [107].

Then, the values of p1, p2 and pf for each node are found by solving the following

2With a slight abuse of notation, in the following, we exclude the nodes x and y from the nodes
in these areas.



56

set of equations.

p1 =psend,Cx LTX + pack LACK, (3.38)

p2 =

[
1−

2− pncCx

2− pncCx
+ 1

1−
∏

k∈Cx (1−ϕk)

]
(1−

∏
z∈Cx

(1− ϕz))

+
1− pncCx

2− pncCx
+ 1∏

z∈Cx (1−ϕz)
, (3.39)

pfx,y =1−
pwx,y(1− pcollx,y)(1− PERx,y)

ϕx(1− p1)(1− p2)
, (3.40)

where psend,Cx is the probability with which at least one node z ∈ Cx begins a trans-

mission, pack is the probability that an ACK packet is transmitted by at least one

node in Cx during a time unit, pncCx
is the probability that a collision is observed on

the channel on the condition that a transmission was going on, pwx,y is the probability

that only node x starts to transmit a packet in the communication range of y, and

pcollx,y is the probability of collision due to hidden terminal transmissions. They are

obtained as follows.

In (3.38), psend,Cx , the probability that at least one node z ∈ Cx begins a trans-

mission, is given by

psend,Cx = (1− p1)(1− p2)

(
1−

∏
z∈Cx

(1− ϕz)

)
. (3.41)

pack, the probability that an ACK packet is transmitted by at least one node in Cx

during a time unit, depends on the number of successful transmissions targeted into

Cx and is not trivial to determine. Motivated by the fact that the traffic rate and

channel conditions do not change dramatically within a small area in most WSN ap-

plications, pack is approximated by the average probability of successful transmissions
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from inside Cx. Thus,

pack =
∑
z∈Cx

pwz,x(1− pcollz,x)(1− PERz,x). (3.42)

Then, in (3.39), pncCx
, the probability that a collision is observed on the channel on

the condition that a transmission was going on, is given by

pncCx
= 1−

∑
z∈Cx

pwz,x
psend,Cx

. (3.43)

Finally, in (3.40), (3.42), and (3.43), pwz,x is found by considering that no node

z ∈ Cy other than node x starts to transmit as follows:

pwx,y = ϕx(1− p1)(1− p2)
∏
z∈Cy

(1− ϕz). (3.44)

Note that pfx,y is averaged among all destinations, y, as the approximation of pfx

for each node x. As suggested in (3.40), the value of pfx,y depends on the channel

conditions and the collision probability. Considering a channel-aware routing pro-

tocol is employed, pfx,y does not vary significantly for different node pairs and such

approximation is acceptable. Accordingly, for a given node x, the failure probability

for each transmission attempt, pfx, is the same for all packets in the queue.

The three probability values, p1, p2, and p
f
x are then used to construct the Markov

chain, {Zn}. Each of these values depends on each other as well as ϕx, which is the

probability that the node x is in the first CCA state. Note that ϕx, p1 and p2

cannot be determined without the knowledge of π, which can only be obtained after

constructing the Markov chain as explained in Section 3.3. Consequently, an iterative

procedure is used to find these parameters. First, an initial guess of ϕx, p1 and p2 is
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used to construct the Markov chains for each node, based on which π is calculated.

Then, values for ϕx, p1 and p2 are updated accordingly to the knowledge of π. The

calculation of ϕx, p1, p2, and π is conducted iteratively, until the difference of the

value for any variable between two iterations is negligible.

Accordingly, {Zn} is characterized by:

• The (v, v′)-th element in PZ is the transition probability from state v to v′

shown in Figure 3.4. The transition probabilities p1, p2, and pf are given by

(3.38), (3.39) and (3.40), respectively. Other unnoted transition probabilities

are 1.

• The element in αZ is 1 for states pointed by a “begin” arrow. Other elements

are 0’s.

• The element in tsC , and tfC is set according to the probability attached to the

arrows pointing to “success” and “fail”, respectively.

• The elements in λZ corresponding to the states, which are denoted by ”Can

receive” in Figure 3.4, are set to λlc + λre. Other elements in λZ are set to λlc.

Moreover, {In} has a single state Sidle, and is characterized by:

• PI is a 1× 1 matrix with the single element being 0.

• The single element in αI is 1.

• The single element in tsI is 1.

• The single element in λI is set to λlc + λre.

After {Zn} and {In} are constructed, the entire DTMC {Xn} is obtained according

to Section 3.3. The single-hop delay distribution is then derived by Theorem 1.

Finally, the end-to-end delay distribution is found according to (3.33).
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Figure 3.6: The Markov chain structure of (a) the communication process, {Cn}, and
(b) the quiescent process, {In}, for the anycast protocol.

3.6 Case Study: Anycast protocol

In this section, the approach for computing single-hop and end-to-end delay distribu-

tions is illustrated for an anycast protocol, which is described in Chapter 2.3.2. This

case study is used to show how the single-hop and the end-to-end delay analysis in

Section 3.3 and Section 3.4 can be applied to protocols with duty cycle operations for

a randomly deployed network. Other anycast protocols, and more generally, other

duty cycle-based protocols, can be modeled using similar approaches.

For the random deployment of nodes, the topology model in Section 3.4.2 is con-

sidered, and node-specific variables are indexed by the ring radius r. In the following

analysis, when there is no ambiguity, the subscript r in ring-specific variables is omit-

ted.

We first show the DTMC {Xn} for the protocol. Then, the protocol-specific

parameters for the generic analysis in Section 3.3, including the relay traffic rate

at each state, and the transition probabilities for {Xn} are derived. The single-hop

delay distribution for each pair of nodes is obtained after these parameters are known.

Finally, the end-to-end delay distribution from each node to the sink is provided.
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3.6.1 Markov Process Overview

The structures of {In} and {Cn} in DTMC {Xn} for this protocol are shown in

Figure 3.6. The quiescent layer {In} consists of a chain of sleeping states and a chain

of listening states of duration Tu. One may think that a single sleeping state and

a single listening state are enough to model the duty cycle operation, similar to the

basic protocol in Section 3.3.2. However, because of the memoryless nature of Markov

process, arbitrary values of duty cycle must be captured with a specific number of

states representing the active period and sleeping period.

When there is no communication, the Markov process transitions through sleeping

states and listening states periodically, representing the duty cycle operation. In

the listening states, the node listens to the channel. Thus, both locally generated

packets and relay packets can arrive. In the sleeping states, the node turns off its

transceiver and only local packets can arrive. The number of states in {In} is Lc =

Tsl/Tu + Ta/Tu = Tp/Tu, where Tu is the time unit, and Tp is the duration of a

duty-cycle period. A large Tu can reduce the number of states in the DTMC, thus,

reducing computation cost for the model, but at the cost of reducing the granularity

and accuracy of the result.

When a packet arrives, the node terminates the quiescent process and begins

the first layer of communication process {Cn}. In each {Cn} layer, the node keeps

transmitting beacon packets. The number of states in {Cn} is Lb = Tb/Tu, where Tb

is the beacon time-out.

If a node receives RTS responses from other nodes, it starts transmitting the

data packet to the first responding node. Retransmissions are conducted in case of a

transmission failure. Since only neighbor nodes that receive the beacon packets with

a high SNR will response, a high quality wireless channel is guaranteed. Moreover,
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in most WSN applications, the traffic rate is low, and the chance of packet collision

with other nodes is small. Therefore, data packets transmitted successfully in limited

number of (re)transmission attempts, which takes negligible time compared to the

sleeping cycle Tp (usually longer than 10 s). Thus, {Cn} only contains transmission

states. When the first RTS packet is received, the transmission terminates in a

success. When the beacon transmission times out, the packet is dropped, and the

transmission terminates in a failure. In either way, the node enters the lower layer.

Note that the beacon timeout Tb is usually chosen equal to the cycle Tp. This is to

ensure that each neighbor node can receive the beacon messages within their duty

cycle period. The entire beacon communication process before packet delivery or

timeout is regarded as a single transmission attempt. Thus, each communication

layer {Cn} contains only one block of {Zn}.

3.6.2 Constructing the DTMC {Xn}

The transition probability matrices in {In} and {Cn}, are obtained according to the

Markov structure in Figure 3.6. In either {In} or {Cn}, there is only one initial state

(denoted by “begin”) with probability of 1. States with outgoing transitions denoted

by “success” or “fail” have a probability to complete the current process in a success

or failure, respectively. The transition probabilities among states are shown in Figure

3.6. Note that transitions with a probability of 1 are not labeled. The transition

probabilities pnr(r, v), (1 ≤ v ≤ Lb), and the traffic rate λI , λC are explained in the

following.

In the j-th time unit in {Cn}, a node located at x in ring r has a probability of

pnr(r, v) of not receiving any CTS response, and enters the next state. If in all Lb

states, the node receives no CTS response, the transmission fails and the packet is
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Figure 3.7: The feasible region and infeasible region around node x, divided into
small areas.

dropped. On the other hand, if in any of the states, a CTS response is received, the

node transmits the packet and the transmission succeeds. The probability pnr(r, v) is

the conditional probability that given the transmissions in the previous v − 1 states

fails, the transmissions in the v-th state still fails. For simplicity the hidden terminals

are ignored. Hidden terminal effects in high density networks can be easily captured

by the model as shown in Section 3.5. Therefore,

pnr(r, 1) = pnr(r, 1 ∼ 1)

pnr(r, v) = pnr(r, 1 ∼ v)/pnr(r, 1 ∼ v − 1), 2 ≤ v ≤ Lb (3.45)

where pnr(r, 1 ∼ v) is the probability that during all first v states in {Cn}, beacon

transmission fails, since no CTS packet is received in these states. Therefore,

pnr(r, 1 ∼ v) =
∏

y=(ry ,θy)∈F(x)

(1− pex(ry)pol(ry, v)pSNR(x,y)) , (3.46)

where each of the small areas at y is located within the transmission range of x,
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C(x), and is closer to the sink than x (this range is called the feasible region of x,

F(x), as shown in Figure 3.7(a)); ry is the distance from the small area to the sink;

pex(ry) is the probability that there exists a node in each area, and is given by

pex(r) = ρ∆r∆θr, (3.47)

where ρ is the node density. Moreover, pol(ry, v) in 3.46 is the probability that the

active period of a node located ry away from the sink overlaps with the first j beacon

transmission time units of the node at x; and pSNR(x,y) is the probability that a

packet, transmitted from a node at x to a node at y, has an SNR higher than some

predefined threshold ψth. It is obtained by (10) in [107].

The probability that the active period of a node at y overlaps with the first v

beacon transmission time units of a node at x, pol(ry, v), is derived as follows. If

node x receives no response in each of the small areas, at least one of the following

statements is true: 1) a node does not exist in the area, 2) at least one node exists but

they are sleeping during any of the first v slots, and 3) at least one node exists and

is awake, but the SNR of the beacon packet they receive is lower than the predefined

threshold ψth. Node y is awake during any of the first v slots means that the first

beacon transmission time unit of node x either coincides with any of the awake time

units of node y or coincides with the last v − 1 sleeping units of node y. Thus,

pol(ry, v) is given by

pol(ry, v) =
Lw∑
k=1

πWk
(ry) +



Lsl∑
k=Lsl−v+1

πs(ry), 1 ≤ v < Lsl

Lsl∑
k=1

πs(ry), v ≥ Lsl

(3.48)

where Lsl is the number of sleeping time units in {In}, πWk
(ry) and πs(ry) are the
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equilibrium probability that node y is in the k-th awake state or sleeping state in

{Xn}, respectively. Lc and Lw are the number of total and awake states in {In},

respectively.

Therefore, pnr(r, 1 ∼ v) in (3.46) is determined using (3.47) -(3.48), and pnr(r, v)

in (3.45) is obtained using (3.46).

Next, the traffic rate at each state, λI and λC , are discussed. In sleeping states

and listening states, the traffic arrival rate is λlc and λre(r) + λlc, respectively. In

beacon transmission states, since nodes are assumed not to respond to any relay

packets, the traffic rate is λlc.

Consider the small area (r : r+∆r, θ : θ+∆θ), where the forwarded traffic arrives

from any node y = (ry, θy) in the infeasible region B(x) = C(x) \ F(x), as shown in

Figure 3.7(b). Therefore λre(r) is given by

λre(r) =

∑
y∈B(x) pex(ry)λo(ry)pfw(y,x)

pex(r)πli(r)
, (3.49)

where λo(ry) is the output traffic transmitted from y. πli(r) is the probability that

node x is in any listening state, and is the sum of the probabilities corresponding to

all listening states in π(r). Moreover, λo(ry) is calculated by

λo(ry) = λ(ry)(π(ry))
T(1− pqfull(ry)− pdrop(ry)), (3.50)

where pfw(y,x) is the probability that a node y forwards a packet to node x, among

all possible forward targets, and λ(ry) is the traffic rate vector for all states in {Xn}

for y. The probability that the packet is dropped due to beacon transmission timeout,

pdrop(ry), is easily obtained as pdrop(ry) = pnr(r, 1 ∼ Lb) (see (3.46)). The probability

that the queue is full when the packet arrives, pqfull(ry), is obtained by pqfull(ry) =



65

πM(ry)Au1, where πM(ry) is the probability vector corresponding to the layer M in

π(ry), and Au is given by (3.5) for node y. In (3.49), pfw(y,x) is proportional to the

probability that node x is available when y transmits a beacon, and is normalized

on the total probability of availability for all possible nodes. The probability of

availability is given by

pavail(y,x) = pex(r)pwake(r)pSNR(y,x), (3.51)

where pwake(r) =
∑Lw

j=1 πWj
(r) is the probability that node x is awake, and πWj

(r)

is the equilibrium probability that node x is in the j-th active state in {Xn}. Then,

pfw(y,x) in (3.49) is calculated as

pfw(y,x) =
pavail(y,x)∑

z∈F(y) pavail(y,z)
, (3.52)

where node z, with the polar coordinates (rz, β), can be in any small area in F(y).

Thus, according to (3.49), the traffic rate of node x at each state is determined.

Accordingly, {In} and {Cn} are characterized by:

• The (v, v′)-th element in PI and PC is the transition probability from state v

to v′ shown in Fig. 3.6.

• The element in αI and αC is 1 for states denoted by a “begin” arrow. Other

elements are 0’s.

• The element in tsI , t
s
C , and tfC is set according to the probability attached to

the arrows denoted by “success” and “fail”, respectively.

• The elements in λI that correspond to the sleeping states, and the elements in

λC are set to λlc. Other elements in λI are set to λlc + λre(r).
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Then, the equilibrium state probability vector, π(r), for the DTMC {Xn} is ob-

tained for each node x. Consequently, the single-hop delay distribution and end-

to-end delay distribution for each ring are obtained according to (3.25) and (3.37),

respectively.

In the following section, empirical evaluations are used to validate the analytical

model for both protocols.

3.7 Analytical Results and Empirical Validations

The end-to-end delay distribution model has been evaluated using MATLAB to de-

termine the single-hop and multi-hop delay distributions for the TinyOS CSMA/CA

MAC protocol (Section 3.5) and the anycast protocol (Section 3.6). The computing

environment is a PC with a Xeon 5150 CPU working at 2.66GHz and 2G RAM. More-

over, empirical experiments and TOSSIM based simulations have been conducted to

validate the results, according to Chapter 2. Each node generates local traffic accord-

ing to a Poisson distribution with rate λlc, and sends the packets to a sink s. Our

experiments with the TelosB motes suggest that it requires on the average 1.7 ms to

transfer each packet from the MCU to the RF transceiver and 2.0 ms vice versa. The

default radio and timing parameters of the experiments are listed in Table 3.1, and

the parameters for the channel model are listed in Table 3.2.

In the experiments, the single-hop delay and end-to-end delay are measured as

described in Chapter 2. Next, the evaluation results for TinyOS CSMA/CA protocol

and the Anycast protocol are presented in Section 3.7.1 and Section 3.7.2, respectively.
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Table 3.1: List of radio and timing parameters for TinyOS CSMA/CA protocol.

Group Notation Description Default Value

Radio

lp data packet size 40 bytes

Rb channel bit rate 250 kbps

Pt transmit power −15 dBm

Timing

Tu time unit 320 µs

Tmax
ibo maximum initial backoff 9.77 ms

Tmax
cbo maximum congestion backoff 2.44 ms

Table 3.2: List of channel-related constants and parameters.

Group Notation Description Default Value

Channel

Pn noise floor −105 dBm

PL(D0) pass loss at reference distance 52.1 dB

D0 reference distance 1 m

η pass loss exponent 3.3

σs standard deviation of log-normal
fading/shadowing

5.5

3.7.1 Experiments for TinyOS CSMA/CA MAC protocol

3.7.1.1 Single-hop Delay Distribution

First, the single-hop delay distribution of the TinyOS CSMA/CA protocol is eval-

uated according to the derivations in Section 3.5. For the evaluations, a single hop

network is considered where the delay distribution is found for a node, while the

neighbor nodes also contend for the channel. Three different network configurations

are considered for the evaluations.

In the first configuration, a node continuously transmits locally generated packets
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Figure 3.8: The cdf of the single hop delay of the CSMA/CA protocol. Both empirical
(emp) and analytical (ana) results are shown.

to a receiver node with a data rate of 2 packets per second. This corresponds to

λlc = 6.4 × 10−4 in the analytical model. Four other nodes are used to transmit

packets at the same rate to create background traffic for contention. In the second

case, the packet rate for all 5 nodes is increased to 10 packets per second. For the

third case, two additional nodes with the same packet generation rate are used, but

are placed so that they act as hidden terminals for the transmitting node. The single

hop delay for 5, 000 packets is recorded for each experiment.

The results of both analytical and empirical validations are shown in Figure 3.8

for the cdf of the delay. The results show that a higher traffic rate increases hop delay,

which is also captured by our model. In addition, the two hidden nodes introduced in

the third case cause heavy contention, and further increase the hop delay. It can be

observed that the analytical model accurately captures the effects of hidden nodes.

For all cases, the analytical model has less than 2% of error compared to the empirical

evaluations.
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In our computing environment, the Matlab program runs for less than 10 seconds

for a typical scenario with 6 neighbors, with Ntx = 3 and M = 5 for all nodes.
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Figure 3.9: (a) The topology and (b) the end-to-end delay distribution for the multi-
hop grid experiments with the TinyOS CSMA/CA protocol.
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3.7.1.2 End-to-End Delay Distribution

To validate the model for multi-hop networks and illustrate the effects of network

parameters in WSNs, two sets of experiments have been performed. First, a network

consisting of 25 TelosB nodes are used. The nodes are placed in a 5 × 5 grid, as

illustrated in Figure 3.9(a). Nodes shown as light-colored boxes only relay packets

while the 8 dark-colored boxes also generate packets according to a Poisson process.

The transmit power for every node is −25 dBm. The generated traffic rate for the 8

nodes, λlc, the queue length,M , and the maximum number of transmission attempts,

Ntx are varied to reveal the relationships between each of the parameters and the

end-to-end delay distribution. End-to-end delay is measured for approximately 3, 000

packets for each configuration.

The results are shown in Figure 3.9(b). As can be observed, the cdf of the ana-

lytical model match well with the empirical results with an error less than 5%. The

slight difference in these results is partially due to the inaccurate collision models,

since the collision range in practice is not an arbitrary area for each node and a tran-

sitional area exists around the boundary [107]. The results suggest that heavier traffic

leads to a longer end-to-end delay and a lower reliability as can be observed from the

asymptotic value of the cdf. In addition, by reducing the queue length, M , and the

maximum number of transmission attempts, Ntx, the reliability decreases. However,

when a low delivery rate (e.g., less than 50%) is sufficient, a lower M or Ntx does not

largely affect the delay performance. More specifically, the average waiting time can

be reduced by decreasing the queue capacity and the chance of collisions is decreased

since less retransmissions are allowed. This fact is useful when designing applications

with nodes having limited memory space.

Experiments are also performed in a realistic indoor environment. A multi-hop
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Figure 3.10: (a) The topology and (b) the end-to-end delay distribution for the in-
door experiments with the TinyOS CSMA/CA protocol.

network of 16 TelosB nodes is located in three rooms as shown in Figure 3.10(a).

Two different network configurations are used to illustrated the effects of topology

changes. In both configurations, each node generates Poisson traffic of 2 packets per

second and the packets are forwarded to the sink as shown in Figure 3.10(a). A
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geographical routing protocol is used to determine the forwarding routes based on

the distance between each node and the sink. In the first configuration, every node

transmits packets with a power of −15 dBm and the routes are shown by dashed

lines. In the second configuration, two nodes are selected to transmit packets with

an increased power of −7 dBm. Therefore, they can directly reach the sink. The

routes for the second case are shown in Figure 3.10(a) by solid lines. The cdf s of

the results are shown in Figure 3.10(b). Accordingly, increasing transmit power in

only two nodes significantly impacts the end-to-end delay as also captured by the

analytical evaluations.

Table 3.3: List of parameters for the anycast protocol.

Group Notation Description Default Value

Radio

lp data packet size 40 bytes

Rb channel bit rate 250 kbps

Pt transmit power −15 dBm

lm beacon and CTS message size 22 bytes

Timing

Tp duty cycle period 1 s

Ta active period 0.5 s

Tb beacon transmission timeout 1 s

Tto beacon transmission interval 12 ms

Tu time unit 0.01 s

Tmax
ibo maximum initial backoff 9.77 ms

Tmax
cbo maximum congestion backoff 2.44 ms

Protocol
rth threshold radius 2.7 m

ψth threshold SNR 10 dBm
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3.7.2 Experiments for Anycast Protocol

We first show that the analytical results of the end-to-end delay distribution are vali-

dated by the simulation and the testbed experiments. The anycast protocol described

in Section 3.6 is implemented in TinyOS 2.0. Our testbed consists of 25 Crossbow

TelosB motes. The nodes are randomly placed in a circular area of radius R = 4.5

m. Thus the density is roughly ρ = 0.39. Each node generates the same amount of

local traffic to be sent to the sink according to a Bernoulli process with average rate

λlc = 0.001 in each time unit Tu = 0.01 s, which equals to 0.1 packet per second.

The default duty cycle is x = 0.5. The simulation is performed on the same topol-

ogy. Both the simulations and the testbed experiments have been run for 2.5 hours

and the end-to-end delay distribution for a node at distance r = 4.3 m is recorded,

respectively. Other parameters are shown in Table 3.3.
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Figure 3.11: The analysis, simulation and experiment results of end-to-end delay
distribution with the Anycast protocol for a node with distance r = 4.3 m to the
sink.

The results are compared with the analytical prediction from the model, as shown

in Figure 3.11. It can be observed that the analytical results agree well with both the
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simulation result and the testbed experiment result, and the error is less than 10%.

Therefore, the simulation is used in the following to validate our model in a larger

space and time scale, and for more randomly generated topologies.
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Figure 3.12: The analysis and simulation results of end-to-end delay distribution with
the Anycast protocol for a node with distance r = 50 m to the sink.

In the second set of evaluations, the network radius is set to 50 m, the transmission

power is increased to −10 dBm. Accordingly, the threshold distance is changed to

rth = 10 m. Moreover, the network density is ρ = 0.1. Durations Tp, Ta, and

Tb are 10 sec, 5 sec and 10 sec, respectively, and the traffic rate is 0.01 pkt/sec.

Other parameters are left unchanged. 20 different topologies are randomly generated

according to a Poisson distribution with the same density. Each topology is simulated

for 1 hour. The end-to-end delay distribution from all nodes with a distance of 50 m

to the sink are measured. The result is shown in Figure 3.12, along with the analytical

results. It can be observed that the analytical result is also within an error of 10% of

the simulation result.

Next, using the end-to-end delay distribution modeled in (3.25), we investigate
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the relationship between the probability of achieving a given end-to-end delay and

various network parameters. In each of the following evaluations, the network density

ρ, the duty cycle x, and the traffic rate λlc for all nodes are varied, respectively. The

default values for these parameters are 0.02, 0.2, and 0.005 pkt/sec, respectively.

Other parameters are kept unchanged from the previous experiment. The network

radius is R = 50 m.
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Figure 3.13: The relationship between network parameters and the delivery proba-
bility with the Anycast protocol.

The probability that the end-to-end delay of a node at distance r = 50 m is

smaller than 3 s, 6 s, and 200 s are shown in Figure 3.13. The results in Figure

3.13(a) reveal that when the network density increases, the probability of delivering
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packets from the edge to the sink also increases. This is because a network with a

higher density tends to have more available relaying nodes at any time. Similarly,

as shown in Figure 3.13(b), when the duty cycle increases, nodes have more waking

time to relay packets, thus the probability of delivering packets is increased. Finally,

Figure 3.13(c) suggests that increasing the traffic rate increases the queueing delay

and decreases the probability that nodes are ready to relay packets. Therefore, the

probability of delivering packets is smaller as traffic rate increases. It is important to

note that given enough time, e.g., 200 s, the delivery probability does not change much

when the duty cycle or the traffic rate varies as shown in Figure 3.13(b) and 3.13(c).

However, in Figure 3.13(a), the delivery probability after 200 s changes greatly when

the network density changes. This is because lower duty cycle and higher traffic rate

prolong the packet waiting time. Given enough time, there are still enough nodes to

relay the packets. On the other hand, a low network density reduces the number of

relaying nodes. Therefore, eventually more packets are lost due to timeout in a low

density network.

For any network setup in the experiments above, the calculation for the end-to-end

delay distribution during any given duration takes less than 2 minute. On the other

hand, the TOSSIM-based simulations determine the delay distribution in the same

order of actual time. For example, for a simulated duration of 2 hours, the simulation

takes roughly 30 mins. Thus, our analytical approach provides insights significantly

faster.

3.8 Conclusions

In this chapter, the probabilistic analysis of end-to-end communication delay in WSNs

is presented. A Markov process based on the birth-death problem is used to model
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the transmission process in a multi-hop network, and the queuing delay and the

effects of wireless channel errors are captured by the model. The developed model

is validated by extensive testbed experiments through several network configurations

and parameters. The results show that the developed framework accurately models

the distribution of the end-to-end delay and captures the heterogeneous effects of

multi-hop WSNs.
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Chapter 4

Event Detection Delay Distribution

In data monitoring applications, events of interest are detected by sensor nodes, and

packets are reported to a sink via multi-hop communication. The event detection

delay consists of discovery delay for individual nodes to sense and detect the event,

and the delivery delay for the network to relay reports to the sink. When a given

number, n, of packets are received by the sink, the event is considered to be detected.

Therefore, the probabilistic analysis of event detection delay is different from the end-

to-end communication analysis in Chapter 3 in that, both the discovery delay and

the delivery delay should be captured. Moreover, these delays should be analyzed for

a group of packets instead of individual ones.

In this chapter, the distribution of event detection delay is analyzed for WSNs.

We first present a brief survey on the related work in Section 4.1. Then, the problems

are formally defined in Section 4.2. Consequently, a spatio-temporal fluid model is

developed in Section 4.3 to derive the distribution of event detection delay. Motivated

by the fact that queue build up in low-rate traffic is negligible, a low-complexity

model is also developed in Section 4.4. Extensive testbed and simulation experiments

validate both approaches in several network scenarios in Section 4.5. For the scenarios
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in which the framework does not yield accurate results, potential reasons are briefly

discussed. Finally, we conclude this chapter in Section 4.6.

4.1 Related Work

Characterizing timing performance for traffic flows in WSNs has been investigated in

different contexts. Recently, several models have been developed to analyze proba-

bilistic bounds on the delay of traffic flows. As an example, the concept of Network

Calculus [20] is extended to derive probabilistic bounds for delay through worst case

analysis [12, 32]. However, due to the randomness in and the low power nature of the

communication links in WSNs, these worst case bounds cannot capture the stochastic

characteristics of end-to-end delay. The communication capacity bounds for wireless

networks or WSNs without duty cycle operation are investigated in [28, 33, 41, 60, 99].

However, the applicability of these models to WSNs is limited since in WSNs, the

wireless channel utilization is often well below the transmission capacity as nodes are

constantly forced into a sleeping state to preserve energy.

The existing studies on event detection delay in WSNs are either focused on (1) the

event discovery delay, i.e., the delay until the event is detected by an individual node,

or (2) the delivery delay in a broadcast network. In [13], assuming a uniform node

deployment and a duty cycle based sensing scheme, an analytical model is developed

to derive the distribution of the delay until a stationary or mobile physical event is

discovered by any node in the network. In [24], events are considered as detected when

it is discovered by a node connected to the sink. On the other hand, the communication

delay for event detection is investigated in [37] for WSNs deployed in a star topology.

When an event occurs, multiple sensors in the network discover it immediately, and

transmit their report packets to the central controller. The probability distribution
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of the delivery delay for the first n(n > 0) report packets is obtained using a hybrid

automata model. However, this model cannot be easily employed for large-scale and

multi-hop WSNs, where the model becomes intractable. In contrast, we emphasize

the delay before the event is detected by the sink, which includes the event discovery

delay and the event delivery delay. Moreover, by utilizing fluid-based models, the

performance of large-scale multi-hop WSNs can be captured.

Fluid-based models have been widely exploited in IP network analysis [53, 59],

and have recently been utilized in the analysis of WSNs [27]. Motivated by the fact

that the individual packet behavior is less significant when a flow is concerned, the

traffic is considered as a continuous flow instead of individual packets. Accordingly,

the complexity of the model can be greatly reduced. Furthermore, spatial fluid-based

models have also been utilized recently in [17, 92] to model stationary properties, such

as traffic rate and energy consumption for large-scale WSNs. These models greatly

reduce the complexity of the (otherwise intractable) problem in either temporal or

spatial domains. In our analytical framework, we develop a spatio-temporal fluid

model for the analysis of event detection delay.

4.2 System Model and Problem Definitions

In this section, we first present the system model, including the random network

topology model and a description for the network protocol in consideration. Then,

the formal definitions of the problems are given.

4.2.1 Network Topology

In a network deployed to monitor a physical event, nodes are considered to be ran-

domly located according to a Poisson point process, where the node density is ρ. A
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Figure 4.1: The network including the sink and the event generation area.

sink node is deployed at location s = (xs, ys), as shown in Figure 4.1.

Assume that at time t = t0, a physical event occurs at location xe = (xe, ye),

which is called the event center, and lasts for duration Te. As shown in Figure 4.1, all

sensor nodes within the detection range, re, can discover the event. Each sensor node

periodically measures the physical world every te seconds using its attached sensors.

During the event duration [t0, t0+Te), whenever the value of the measurement satisfies

a predefined rule, e.g., temperature higher than a given threshold, a report packet

of size L is generated and is forwarded to the sink. Each sensor node is assumed to

have the same sampling rate, but with a random phase shift, i.e., samples are taken

unsynchronized among nodes. Therefore, there is a discovery delay between when

the event occurs and when it is captured by individual nodes. Due to inherent noise

in the sensor readings, n (n ≥ 1) readings from multiple sensor nodes are required

at the sink to successfully detect the event occurrence. Accordingly, we define the

following:

Definition 1. An event is n-detected if n report packets for that event are received

by the sink.

Moreover, each node is implemented with a packet queue of maximum size, M .
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Figure 4.2: The timing of node operations for the anycast protocol studied for event
detection delay.

4.2.2 The Anycast Protocol

The delay characteristics of a WSN is dependent on the MAC and routing protocols

used in the network. In this chapter, we consider the Anycast protocol described

in Chapter 2 for our analysis. A slight change has been made to the timing of the

protocol to make the problem tractable, as explained below.

The anycast protocol operation is depicted in Figure 4.2. Each node, except

the sink, operates in a duty cycle with a duration Tp. Each cycle is divided into two

phases. During the first phase, the listening phase, nodes listen to the channel for any

possible incoming traffic. The second phase is the transmission and sleeping phase,

in which nodes first try to transmit every packet in the queue. After all packets are

transmitted, they turn off radio transceivers to save energy. The duration of these

two phases are denoted by Ta and Tb, respectively. The duty cycle, ξ, is defined as

ξ = Ta/Tp. To obtain a long network lifetime, it is desirable to have a very low duty

cycle and hence, generally, Ta << Tp. Nodes are assumed not to be synchronized.

The packet transmission follows the process described in Chapter 2. When a node

has a packet to send, it first broadcasts short beacon messages periodically. If any

other node closer to the sink receives the beacon message with a higher signal to

noise ratio (SNR) than a given threshold, ψth, it sends back a CTS message. The first
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node that responds with a CTS message is chosen as the next-hop node. Finally, the

sender transmits the data packet to it.

The transmission interval of beacon messages is set equal to Ta, as shown in

Figure 4.2, to ensure that other nodes can receive the beacon messages when they are

listening. Therefore, during the listening phase, each node receives a beacon message

from its neighbors, if they transmit beacon messages. We assume that all messages

from different nodes do not collide with each other. This is a valid assumption,

because the duty cycle is usually very small in monitoring applications. Moreover,

the beacon and CTS messages are very short and are unlikely to collide. Although

data packets may be longer, their length is still usually very small compared to the

listening period. In the rare event where data packets collide, their senders can utilize

retransmissions after a short amount of delay to ensure delivery. For example, in a

typical monitoring WSN application, the operation cycle Tp may be set to 10 s, and

the listening phase duration Ta may be set to 100ms to achieve a 1% duty cycle,

as shown in Figure 4.2. The transmission duration of a beacon message or a CTS

message is usually less than 1ms, and the transmission duration for a data packet

with 40 bytes is less than 2ms for many WSN platforms such as MicaZ and TelosB.

The collision probability in this case is minimal and can be neglected. The testbed

evaluations reveal that these assumptions are reasonable as discussed in Section 4.5.

Note that during a listening phase, a node can only receive a single beacon message

from any other node. Thus, at most one packet can be transmitted from node x to

node y for any neighbor nodes (x,y) during a duty cycle Tp. However, a node may

receive multiple beacon messages and respond to them during a listening phase. Thus,

it is possible for a node to receive multiple data packets in each listening phase from

multiple senders. In such scenario, all packets received are stored in the queue. New

packets are dropped if they arrive when the queue is full.
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Packets are transmitted in a FIFO basis, until buffered packets are all trans-

mitted. A node may transmit multiple packets to multiple neighbors, but can only

transmit one packet to each single neighbor in each duty cycle. After all packets

are transmitted, the node turns off its transceiver to save energy, until the next lis-

tening phase starts. If at the end of the transmission/sleeping phase, there are still

packets not transmitted, the node stops broadcasting beacon messages and begins

listening. The beacon message for the current packet will be resumed in the next

transmission/sleeping phase.

4.2.3 Problem Definitions

As explained in Chapter 1, several random factors in the topology and node operation

affect the communication in the network. Accordingly, the paths from detecting sen-

sors to the sink are dynamically generated and can be considered random. Thus, the

delay characteristics of event detection is modeled based on the following definitions.

Definition 2. The n-delay of an event is the delay between when the physical event

occurs and when the event is n-detected.

Definition 3. The (p,n)-delay bound of an event is delay within which the event

is n-detected with probability p.

It is assumed that no in-network processing, such as aggregation, is utilized in the

network and their effects are left as a future work. To evaluate the delay characteristics

of event detection in WSNs, given network and protocol parameters, n, and p; we are

interested in the following problems:

• What is the n-delay distribution of an event?

• What is the average n-delay of an event?
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• What is the (p, n)-delay bound of an event?

In Section 4.3 and Section 4.4, the proposed spatio-temporal fluid models are

presented to address these questions.

4.3 Transient Analysis of Event Detection

In this section, the spatio-temporal fluid model is presented. The network is rep-

resented by a continuous fluid entity distributed in the entire network area. Fur-

thermore, the traffic is not considered as individual packets, but a continuous packet

fluid. By utilizing a spatio-temporal fluid model, the complexity of the problem in

both spatial and temporal domains is reduced, and becomes tractable. The testbed

and simulation evaluations (Section 4.5) reveal that the fluid approximation accu-

rately models the delay characteristics.

Consider a location in the network area denoted by x = (x, y). The fluid network

model regards the nodes as a fluid entity over the entire space. Then, in an infinitesi-

mal area around location x with size dx 1, the amount of nodes is ρdx, where ρ is the

node density. We also denote the feasible region of x (the region in the transmission

range of x and is closer to the sink) as Fx, and the backward region of x (the region

in the transmission range of x and is farther to the sink) as Bx. To describe the fluid

traffic in the spatial fluid network, the following traffic concepts are introduced:

Definition 4. The generated, incoming, and outgoing traffic rate density for an in-

finitesimal area dx is respectively defined as the average number of packets generated,

received, and transmitted by the nodes within the area, if any, in an infinitesimal

duration dt, divided by the duration dt, and the size of the area dx.

1With a slight abuse of denotation, this infinitesimal area is henceforth denoted by dx.
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In other words, the traffic rate densities define the speed at which packets are gen-

erated, received, and transmitted in unit space, respectively. In the transient analysis,

their values change over time, and thus, are functions of t. The generated, incoming,

and outgoing traffic rate density are denoted by gx(t), λx(t), and ωx(t), respectively.

Note that by assuming a fluid model, the amount of nodes in an infinitesimal area

dx, and the amount of packets sent in an infinitesimal duration dt, are not necessarily

an integer number.

Definition 5. The buffered traffic density for an infinitesimal area dx is defined

as the average number of packets buffered in the queue by the nodes within the area

divided by the size of the area dx.

The buffered traffic density is also a function of t, and is denoted by qx(t).

In the following, we derive the set of equations that describe the fluid traffic

characteristics of the network after t = t0. Without loss of generality, let t0 = 0. For

each node, the generated traffic rate density is given by

gx(t) =


ρ

te
, |x− xe| < re, and 0 ≤ t < Te,

0, otherwise,

(4.1)

where ρ is the density, te is the reporting interval, and |x−xe| denotes the Euclidean

distance between x and xe. During an infinitesimal duration dt, the amount of

arriving traffic, along with the traffic already stored in the queue is

ax(t) = qx(t) + (λx(t) + gx(t)) · dt. (4.2)

which is the available traffic that needs to be transmitted.

For each infinitesimal area dy in the feasible forwarding region Fx of x, the amount
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of nodes with good channel quality is

cx,y = ρ · px,y(ψth), (4.3)

where px,y(ψth) is the probability that the CTS message sent from a node at y has

a higher SNR than a given threshold ψth when received by the node at x ((10) in

[107]). Thus, the total amount of nodes in Fx with good channel quality is

cFx =

∫
Fx

cx,ydy. (4.4)

Note that between any pair of nodes, at most one packet can be transmitted in

a cycle Tp. Thus the maximum amount of traffic transmitted during a cycle Tp from

dx to anywhere in Fx is

Ωmax
x = ρdx · cFx . (4.5)

Since the traffic is considered as a fluid and a packet takes one cycle to be trans-

mitted between a pair of nodes, in dt, the maximum amount of traffic sent from dx

is Ωmax
x · dt/Tp. In the case where each node in dx has less than 1 available packet

in its queue, i.e., ax(t) < 1 · ρ, it still takes an entire cycle to transmit them. In

this case the actual transmitted traffic during dt is ax(t)
1·ρ · Ωmax

x · dt
Tp
. Accordingly, the

transmitted traffic rate density at x is

ωx(t) = min

[
1,
ax(t)

1 · ρ

]
Ωmax

x

dt

Tp
· 1

dxdt

= min [ax(t), ρ]
cFx

Tp
, (4.6)

where ax(t) is the available traffic density given by (4.2).
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The outgoing traffic in each infinitesimal area is equally distributed to every node

with good channel quality in its feasible region. Thus, the incoming traffic rate

density, λx(t), that is received from each infinitesimal area in the backward region,

Bx, is given by

λx(t) =

∫
Bx

ωy(t) ·
cy,x
cFy

dy. (4.7)

Within duration dt, the change in buffered traffic density is

dqx(t) =
(
gx(t) + λx(t)− ωx(t)

)
dt, (4.8)

and the buffered traffic density at time t+ dt changes to

qx(t+ dt) = qx(t) + dqx(t) (4.9)

Thus, (4.6), (4.7), (4.8) and (4.9) describe the traffic dynamics of the network

after t = t0. Given the initial value of qx(t0), the traffic rates in the network can be

evaluated for any time instance t > t0. Accordingly, the total incoming traffic rate

at the sink, which models the total number of packets received by the sink, can be

obtained. Note that within the transmission range of the sink, the outgoing traffic

rate density in (4.6) becomes

ωx(t) = ax(t), (4.10)

since the sink is always awake and the traffic can all be transmitted to the sink

directly. Moreover, for these nodes, in (4.7), the backward region Bx excludes the

areas within the transmission range of the sink. Then, at the sink, the incoming
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traffic rate is calculated as

Λ(t) =

∫
x:|x−s|≤rth

ωx(t)dx, (4.11)

where rth is the distance threshold around the sink within which all nodes directly

send packets to the sink.

To calculate the incoming traffic rate at the sink, the entire network area is dis-

cretized into small areas, and the time is divided into small time steps. Initially, the

buffered traffic density for every infinitesimal area in the network at time t = 0 is q0x.

λx(t) and ωx(t) are set as 0. Then, ωx(t) and λx(t) are calculated using (4.6) and

(4.7), respectively. Then, qx(t) is updated for the next time step according to (4.8).

This process is repeated for each time step, and Λ(t) as a function of t is obtained.

Although the packets are generated with a periodic pattern, the randomness in-

troduced by the routing path and the communication delays results in stochastic

behavior for the arrival of packets after multiple hops at the sink, especially in large-

scale networks. More specifically, empirical experiments reveal that the traffic arrival

process can be approximated by a Poisson process as discussed in Chapter 2. To

obtain the n-delay distribution from Λ(t), the traffic arrival process is considered a

Poisson process with variable rate according to Λ(t). The evaluations in Section 4.5

also validate the accuracy of this assumption. Consequently, the n-delay distribution,

fn(t), of the nonhomogeneous Poisson process is given by [34, Ch. 2.4]:

fn(t) =
[Λ̂(t)](n−1)Λ(t)e−Λ̂(t)

(n− 1)!
, (4.12)

where Λ̂(t) is the integral of Λ(t) over duration (0, t].

Accordingly, we have the following theorem:
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Theorem 2. For a WSN system described in Section 4.2, the average n-delay and

the (p, n)-delay bound of an event are

µ(n) =

∫ ∞

0

tfn(t)dt, (4.13)

j(p, n) = f−1
n (p), (4.14)

respectively, where fn(t) is given by (4.12).

Proof. Since fn(t) in (4.12) is the pdf of the n-delay, (4.13) and (4.14) are directly

obtained according to the definition of the pdf.

4.4 Simplified Delay Model

The spatio-temporal fluid model presented in Section 4.3 greatly lowers the complexity

of the problem. In the model, the entire network area is discretized into small areas,

and the traffic rates are calculated for each small area in each time step. To achieve a

high accuracy, the size of small areas and the duration of time steps are usually chosen

to be very small. In this section, we provide a simplified model to further reduce the

calculation complexity. In this simplified model, the network area is divided into

small rings. Thus, the spatial calculation complexity is reduced from 2D to 1D.

The simplified model assumes that the traffic is very low in the network, which

is typical for many WSN applications. Thus, the queueing effect can be neglected.

Moreover, based on the channel-aware next-hop selection explained in Section 4.2, it

is assumed that the channel error is negligible within a transmission range of R. For

a node located at x, after it receives a packet (locally generated or forwarded), in the

duration t, the probability that there is no node in its feasible forwarding region Fx
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waking up is

pnfx (t) ≈
∏

y=(l,θ)∈Fx

[
1− ρdypwake(t)

]
=
[
1− ρdypwake(t)

]AFx
dy

= exp
(
−AFxρp

wake(t)
)
, (4.15)

where the product is conducted over Fx, divided according to the polar coordinates

originated at x, ρ is the network density, AFx is the size of Fx, and pwake(t) is the

probability that a node in each region wakes up during the period t. Since the wake

period of each node is unsynchronized with each other, pwake(t) is irrelevant to the

location. Moreover, since each node wakes up at uniformly distributed times, we have

pwake(t) =


t

Tp
, 0 ≤ t ≤ Tp

1, t > Tp

. (4.16)

Therefore, the probability that at least one node in Fx wakes up during t is

pfwakex (t) = 1− pnfx (t) =

 1− e−AFxρt/Tp , 0 ≤ t ≤ Tp

1− e−AFxρ, t > Tp

. (4.17)

This is exactly the cdf of the single hop delay. Therefore, the pdf of single hop delay

for a node at x is

fsh(x)(t) = dpfwakex (t)/dt =


AFxρ

Tp
e−AFxρt/Tp , 0 ≤ t ≤ Tp

0, t > Tp

. (4.18)

The end-to-end delay distribution from location x to the sink can be found as the
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convolution of single-hop delay distributions in the path as explained in Chapter 3.

Thus, the pdf of end-to-end delay from x to the sink is

fe2e(x)(t) =

∫
y∈Fx

fe2e(x′) ∗ fsh(x)(t)ρdy, (4.19)

where y is the location (l, θ). Note that since the queueing effect is neglected, the

nodes with the same distance to the sink have the same end-to-end delay to the sink.

Therefore, the end-to-end delay distribution is calculated only once for all nodes with

the same distance to the sink. This fact results in a significant reduction on the

calculation time.

Suppose the packet generation function for a node at x is gx(t), then the packet

reception rate from x by the sink is

λx(t) = gx ∗ fe2e(x)(t). (4.20)

Then, the packet reception rate at the sink is the sum of traffic generated from each

location in the event detection region. Thus,

Λ(t) =

∫
x∈E

gx ∗ fe2e(x)(t)dx, (4.21)

where E is the region within the detection range, re, of the event location, xe, i.e.,

E = {x : |x− xe| ≤ re}.

Finally, the distribution of event detection delay is obtained by using (4.21) in

(4.12), and the average n-delay and the (p, n)-delay bound of an event are obtained

by Theorem 2.
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4.5 Testbed Validation and Simulation Results

To evaluate the accuracy of our proposed analytical framework, testbed experiments

and simulations are conducted. The average n-delay and the (p, n)-delay bound of an

event in the experiments and simulations are used to compare against the framework.

The spatio-temporal fluid model in the framework is implemented using C++ and the

simplified model is implemented using MATLAB. In this section, we show that our

models provide a high accuracy against both empirical experiments and simulations.

4.5.1 Validation of the Event Detection Delay Analysis

Table 4.1: List of radio, timing and protocol related constants and parameters.

Group Notation Description Default Value

Radio

lp data packet size 40 bytes

lm beacon and CTS message size 22 bytes

Rb channel bit rate 250 kbps

Timing

Tp duty cycle period 5 s

Ta wake period 0.1 s

Tb beacon transmission timeout 10 s

Tmax
ibo maximum initial backoff 9.77 ms

Tmax
cbo maximum congestion backoff 2.44 ms

Ttx data packet transmission time 1.6 ms

Tto beacon transmission interval 0.1 s

Protocol
rth threshold radius 0.6 m

ψth threshold SNR 10 dBm

We first present the results of the testbed experiments. Our testbed, as described

in Chapter 2, consists of 40 Crossbow TelosB motes. The nodes are randomly placed
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Table 4.2: List of channel-related constants and parameters.

Group Notation Description Default Value

Channel

Pn noise floor −105 dBm

PL(D0) pass loss at reference distance 52.1 dB

D0 reference distance 1 m

η pass loss exponent 3.3

σs standard deviation of log-normal
fading/shadowing

5.5

in a rectangular area of size 2× 2.4 m2, as shown in Figure 4.3(a). The node density

is thus 7.6 m−2. The sink is located at (1.5 m, 1.9 m) and is marked by a solid dot in

Figure 4.3(a). The radio, timing and protocol related parameters are shown in Table

4.1, whereas the channel related parameters (refer to [107] for detailed explanations)

are listed in Table 4.2. The transmission power is set to −25 dBm for all nodes.

In the experiment, the event center is located at (0.5 m, 0.5 m). Each node in the

network boots up at random time instances. Therefore, they are not synchronized. At

time t0, each of the nodes within re of the event center (marked as squares in Figure

4.3(a)) starts to generate a series of packets with interval 4 s, and then the generated

packets are forwarded to the sink. After 30 s, the nodes stop to generate packets. The

experiment is conducted for 62 times. In each test, the delay for all packets received

by the sink is logged, and the average total number of packets received as a function

of time t after t0 is depicted in Figure 4.3(b).

The experiment is also conducted using TOSSIM [56] with the same parameters.

Instead of a fixed topology, 100 randomly generated network topologies with the

same area and density are used and for each random topology, the simulation is

conducted for 5 trials. Then, the total number of packets received at the sink is
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(b) The reception rate at the sink.
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(c) The mean event delay.
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(d) The (p, n)-delay bound of the event delay for
p = 0.75.

Figure 4.3: The map of the testbed experiment, and the results of testbed experiment,
the simulation and the models.

calculated over the trials. The results are shown in Figure 4.3(b) along with the

results given by the two analytical models in (4.11) and (4.21). As can be seen in

Figure 4.3(b), both testbed experiments and simulations validate the models. To

evaluate the accuracy of the models in terms of the average n-delay and (p, n)-delay

bound of event detection, from the testbed and simulation result the mean delay for

the first n = 3 to 9 packets are calculated respectively. The (p, n)-delay bound for

p = 0.75 is also calculated for different n’s. The results are shown in Figure 4.3(c)

and Figure 4.3(d). For the majority of the cases, testbed and simulation results are
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within 5% of the model. Moreover, the results also confirm the accuracy of TOSSIM

simulations, which are used in the following for evaluations of the proposed framework

in larger-scale networks.

4.5.2 Validation in Larger-Scale Networks

To further evaluate the accuracy of the analytical framework in larger-scale networks,

extensive simulations are conducted. Network density, ρ, and the sensing interval,

te, are varied to observe their impact on the event detection delay. Unless otherwise

noted, the following parameters are used in the evaluations: The nodes are randomly

generated in a square area of size 60×60 m2, according to a Poisson point process with

density ρ = 0.2 nodes/m2. The transmission power is −10 dBm, which corresponds

to a transmission range of roughly 10 m. The cycle length is Tp = 10 s, in which the

listening period is Ta = 0.1 s, corresponding to a duty cycle of ξ = 0.01. The packet

sensing interval is te = 4 s. The event detection range is re = 5 m. The sink is located

at (0, 0) m, and the event center is located at (30, 30) m. Thus, the distance between

the event center and the sink is des = 42.4 m. Other parameters are the same as

those in Section 4.5.1.

In Figs. 4.4(a)-4.4(d), the effects of sensing interval are shown. In different simu-

lations, the sensing interval te is set to 1 s, 2 s, 3 s and 6 s respectively for each node,

corresponding to packet generation rates of 1, 0.5, 0.333, and 0.167 pkt/s, respec-

tively. The time instances of packet arrivals are logged at the sink, and the average

total number of packets received over time is plotted in Figure 4.4(a) along with the

model results. It can be observed that for larger sensing intervals, i.e., 3 s and 6

s, both models are accurate with an error less than 5%, whereas for smaller sensing

intervals, i.e., 1 s and 2 s, the models accuracy is lower (up to 30% when n = 10 and
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Figure 4.4: Mean delay and delay distribution for larger-scale networks. Analytical
results are accurate compared to simulations in most cases.
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te = 1 s). This is because with a lower sensing interval, the generated traffic rate is

higher. As a result, the received traffic rate at the sink is affected by the clustering

effect discussed in Section 4.5.4.

The average n-delay of an event for n = 10, 20, 30, 40, 50 packets are shown in

Figure 4.4(b) for te = 2, 3 s respectively. Moreover, Figure 4.4(c) depicts the cdf of

event detection delay for n = 10 and 50 with sensing interval te = 3 s. The average

10- and 50-delays are also shown in Figure 4.4(d) with varying sensing rates (i.e., the

inverse of the sensing interval). In can be observed that the delay reduces when the

sensing rate increases, as expected. Note that as Figure 4.4(b) suggests, for n = 10,

the mean event detection delay for te = 6 only increases for about 2.5 s from the mean

delay for te = 3 s. This is because for the first 10 packets, the majority of the event

detection delay is caused by the packet communication to the sink, no matter how

fast packets are generated. In practice, it may be a good idea to set a low sensing rate

for sensing nodes if only a few packets are required to detect the event. This saves

a great amount of sensing energy with a relatively small tradeoff of event detection

delay.

Next, the effects of network density are investigated for values of 0.1, 0.15, 0.2, and

0.25 nodes/m2. Note that although the network density is changed, the total number

of packets generated in the event area remains the same. This is achieved by setting

the sensing interval te to 2, 3, 4, and 5 s, respectively. By fixing the input traffic,

the forwarding capacity of the network with changing density can be analyzed. The

mean event detection delay for each density is shown in Figure 4.4(e) as a function

of the number of packets n required to detect the event. The 10- and 50-delays of an

event are shown in Figure 4.4(f). The figures show that when the network density is

lower, the event detection delay slightly increases. This is because when the density

is high, each node in the network generally waits for less time before another node
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wakes up and becomes available to forward its traffic. Thus, the transmission delay

is lower, and the event detection delay is also reduced. However, the traffic reception

rate at the sink is still limited by the packet generation rate, which is the same for all

cases. Therefore, the average n-delay and (p, n)-delay bound of event detection does

not change too much when the density is changed. This suggests in practice, to save

sensing energy, the sensing rate of sensor nodes can be reduced. To compensate for

the increased event detection delay, additional nodes can be deployed to increase the

density.

Note that when the density is as low as 0.15 nodes/m2, the average n-delay and

(p, n)-delay bound from the simulation are higher than the model predictions. This

is because when the network density is high, nodes operate well below the forwarding

capability. On the other hand, when the density is lower, the network supports less

amount of traffic forwarded to the sink. Thus, the detection delay is limited by the

lower capability. The error of model prediction is due to the clustering effect discussed

in Section 4.5.4.

4.5.3 Comparison Between the Models

In this section, we briefly present the difference between the two proposed models. By

assuming that the nodes with the same distance to the sink have the same end-to-end

delay to the sink, the simplified model requires O(
√
A) time, where A is the area

of the network. On the other hand, since the spatio-temporal fluid model calculates

the traffic rates for each location in the entire 2D network, it requires O(A) time.

The simplified model significantly outperforms the fluid model in terms of calculation

efficiency. Note that both models yield the result in a significantly less time than

simulations. For a typical network of 400 nodes, the simulation takes more than one
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day to complete, while the complete fluid model takes around 10 minutes to calculate,

and the simplified only takes less than 1 minute.

On the other hand, the simplified model becomes inaccurate when the nodes with

the same distance to the sink do not have the same end-to-end delay. An example is

a non-regular network where nodes density varies over the space. The complete fluid

model, however, can be extended to provide accurate result in such networks when

the density ρ in (4.1) - (4.6) by ρ(x), a density function of corresponding location x.

4.5.4 Limitations of the Models

It is shown in Figures 4.3 and 4.4 that both proposed models yield accurate results.

The only cases where the result is less accurate is when the density is low, or when

the traffic rate is high (ρ ≤ 0.15 node/m2 in 4.4(e) or te ≤ 2 s in 4.4(d)). Although

such scenarios are generally not typical in WSN applications, it is important to point
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out that this is because by considering the nodes as a uniformly distributed fluid over

the space, the bottlenecks of random network is neglected. In Figure 4.5 an intuitive

view is provided on how the bottlenecks are formed in a random network. As can

be seen in Figure 4.5, the nodes form multiple clusters within which the nodes have

a high degree of connection and less degree among clusters. This suggests that the

transport capacity between A and B, which is usually dependent on the minimum

cutset between the two nodes, is limited by the few paths across the clusters. These

paths form the bottlenecks of communication [25]. Since the spatio-temporal fluid

model assumes a uniform node distribution, it does not capture the bottlenecks,

which may cause a higher detection delay when the network density is low, or when

the traffic rate is high.

Note that although communication capacity bounds for wireless network commu-

nications without duty cycle operations are investigated in [28, 33, 41, 60], as far as

we know, the exact solution for communication capacity in random WSNs with duty

cycle operations is still an open research issue.

4.6 Conclusions

In this chapter, an analytical framework is proposed to model the event detection

in WSNs. In the framework, a spatio-temporal fluid model is utilized to obtain the

distribution of the event detection delay. The average delay and soft delay bounds are

then obtained. To reduce the calculation complexity, a simplified model is also pro-

posed, motivated by the fact that the queue build up in WSNs is negligible. Testbed

experiments and simulations are used to validate the accuracy of both approaches.
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Chapter 5

Network Lifetime Distribution

In this chapter, the analysis for the probabilistic network lifetime in WSNs is provided.

As the foundation for the lifetime analysis, the probabilistic energy consumption anal-

ysis is also presented. The analysis in this chapter is based on the models presented

in Chapter 3, since the analysis of both the end-to-end delay and the network lifetime

utilize the Discrete-Time Markov model at the node level.

In the following, first, the developed Markov process-based model to analyze the

distributions of energy consumption in WSNs is presented, and the distributions of

node lifetime and network lifetime are derived using the energy consumption distribu-

tion. Then, it is shown that when the given period is large enough, energy consump-

tion converges to a Normal distribution. This result greatly reduces the computation

cost for the analysis. Afterward, a case study for the Anycast protocol is provided,

and the relationships between network parameters and the lifetime distribution are

investigated. Finally, the analysis is validated by realistic testbed experiments and

extensive simulations.
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5.1 Related Work

The majority of existing work on energy and lifetime analysis in WSNs is focused

on the average measures. Average energy efficiency is evaluated for specific protocols

[11, 78, 100], and average energy consumption models are proposed in analytical

studies [21, 65]. In [21], an analytical energy model is provided to estimate the

energy consumption, assuming SMAC [100] and Directed Diffusion [46] as the MAC

and routing protocols. The energy consumption of the network is analyzed for low

power listening (LPL) operations, and the wasted energy on collision and overhearing

are taken into account. In [65], another analytical model is developed to capture the

average energy consumption of both software and hardware, and focuses on preamble

sampling-based MAC protocols. Stochastic characteristics of energy consumption,

however, are not captured by these models.

The effects of routing strategies on energy consumption have also been investigated

recently. In [42], a realistic radio model is adopted to analyze the tradeoff between

single-hop long-distance transmissions and multi-hop short-distance transmissions.

The same problem is also investigated in [97], using an energy model focused on

circuit level hardware. These models, while providing a detailed estimation of average

energy consumption for certain protocols, do not offer higher-order statistics of energy

consumption for generic MAC or routing protocols.

For single node and network lifetime analysis, most of the existing work only

investigates average measures. An analytical model is provided in [26] to study the

energy consumption and lifetime of two-tier cluster WSNs. Lifetime is measured in

terms of data collection “rounds” in which an average amount of energy is consumed

for each node. In [54], the lifetime is analyzed for an always-on network, where the

energy management problem is most severe. In [48], a detailed energy and lifetime
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model is proposed for trigger-driven and duty-cycle driven applications in WSNs. For

a given event arrival rate, the model derives the average lifetime of a node. In all of

these studies, only the first-order lifetime statistics are investigated.

Probably the most closely related work is the probabilistic lifetime analysis pro-

vided in [73], where a cluster-based network topology is considered for event-driven

applications. The node lifetime distribution is modeled for a cluster-based network

topology, using a TDMA MAC protocol. However, the applications of this analysis

to other network topologies, such as mesh topologies and ad hoc networks, and other

protocols, such as CSMA-based protocols, have not been shown.

In the following, we present the probabilistic energy consumption and network

lifetime analysis by defining the problems first.

5.2 Problem Definition and System Model

In WSNs, energy is consumed by each node for various activities including sensing,

data processing, and communication. We assume that each node is equipped with

K sensors, and each sensor k ∈ {1, . . . , K} is used to sense the physical environment

every Ts,k seconds (subscript “s” refers to “sensing”) with an energy consumption

of εs,k. Based on the application requirements, a packet is generated locally if the

sensed information satisfies event definitions. For each received and locally generated

packet, the node processes the data with an energy consumption of εp. Moreover,

the energy consumption for the communication, εc, is a variable dependent on the

network parameters and the protocols running on each node.

We consider two types of network deployments, the random deployment and the

deterministic deployment, as explained in Section 2.1.1. In both cases, each node x is

characterized by its input traffic rate, λ(x), queue length,M(x), and battery capacity,
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C(x). Moreover, the wireless channel between each node is modeled according to a

log-normal fading channel model [107], as explained in Section 2.1.2, whereas other

channel models can also be used.

For a given network topology and node parameters as described above, we are

interested in the following problems:

1. Given a period of time T , what is the energy consumption distribution, FE(x,T )(e),

of a node at x?

2. Given the energy consumption distribution, what is the lifetime distribution,

FL(x,C(x))(t), of a node at x?

3. Given the energy consumption distribution for each node x in the network,

what is the distribution of the network lifetime, FNL(t)?

These random variables depend on the protocol operation and network topology.

In this section, an overview of our solutions for the above problems is provided. The

details of the framework are elaborated in Sections 5.3 and 5.4.

5.2.1 Single Node Energy Consumption Distribution

The randomness in energy consumption and the associated lifetime is due to two

main components: First, the communication protocol operation induces randomness

because of the wireless channel errors and queueing operation. Second, the variations

in the network topology results in different nodes consuming different amounts of

energy in the network. In the following, we first present the energy consumption

distribution for random deployment, which models both cases. Then, a special case

for deterministic deployment, e.g., grid topology, is presented, where the randomness

due to topology can be ignored.
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5.2.1.1 Random Deployment

For a randomly deployed network, the randomness in energy consumption due to

topology is caused by the variations in local density. This is captured by considering

the randomness due to protocol operation and topology separately. Accordingly, for a

node at x, the r.v. for energy consumption during a given time period, T , is expressed

as the sum of 3 independent r.vs:

E(x, T ) = Es(x, T ) + Ecp(x, T ) + Etc(x, T ), (5.1)

where Es(x, T ) is the r.v. of energy consumption for sensing, and Ecp(x, T ) is the r.v.

of energy consumption for communication and processing. These two terms capture

the randomness due to protocol operation by considering a homogeneous density in

the network. The last term in (5.1), Etc(x, T ), is an empirically determined zero-

mean r.v. that captures the randomness in energy consumption due to topology.

Accordingly, the pdf of the total energy consumption of a node at x is

fE(x,T )(e) = fEs(x,T ) ∗ fEcp(x,T ) ∗ fEtc(x, e), (5.2)

where the pdf of the corresponding r.vs. in (5.1) are convolved. Testbed and simula-

tion results are used in Section 5.6 to show that the assumption of independence for

randomness due to protocol and topology is accurate.

5.2.1.2 Deterministic Deployment

A large class of WSN applications relies on deterministic deployment of sensor nodes,

e.g., grid deployment. This is a special case, where the effects of randomness due to
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topology are not observed. Accordingly, (5.2) can be simplified to

fE(x,T )(e) = fEs(x,T ) ∗ fEcp(x,T )(e). (5.3)

Next, the distribution of energy consumption for sensing, fEs(T )(e), is described
1

and the Markov-chain formulation for deriving the distribution of energy consumption

for communication and processing, fEcp(x,T )(e), is summarized.

5.2.1.3 Energy Consumption for Sensing

During any given time duration T starting at t0, i.e., the period [t0, t0 + T ), for some

sensor k with periodic sensing interval Ts,k and energy consumption per sensing εs,k,

denote the first sensing activity for sensor k after t0 occurs at tk1. The number of

sensing activities during T is then nk(T ) = ⌈(t0+T−tk1)/Ts,k⌉. Since t0 is independent

of sensing activities, tk1−t0 is a r.v. uniformly distributed in range [0, Ts,k). Therefore,

the pmf of nk(T ) is given by

fnk(T )(n) =


Ns,k − n+ 1, n = ⌊Ns,k⌋+ 1

n+ 1−Ns,k, n = ⌊Ns,k⌋

0, otherwise

, (5.4)

where Ns,k =
T

Ts,k
. The pdf of energy consumption for all K sensors during T is

obtained as

1When there is no ambiguity, the parameter x in any node-specific variables is omitted for clarity.
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fEs(T )(e) =
K∑
k=1

∑
n

n · δ(e− fnk(T )(n))

=
K∑
k=1

[
(Ns,k − ⌊Ns,k⌋) · δ (e− (⌊Ns,k⌋+ 1) εs,k)

+ (⌊Ns,k⌋+ 1−Ns,k) · δ (e− ⌊Ns,k⌋ εs,k)
]
. (5.5)

5.2.1.4 Energy Consumption for Communication and Processing

Now, we briefly introduce the model for the analysis of the energy consumption for

communication and processing, Ecp(T ), and leave the details of the model to Section

5.3.

The energy consumed by communication and data processing at each node in the

network is modeled by a discrete-time queueing system with time unit Tu, which is

characterized by its traffic inter-arrival distribution and service process. More specif-

ically, in each time unit, the traffic inter-arrival is modeled according to a Bernoulli

process (refer to Section 2.1.3 for detailed explanation), and a variant of the Discrete

Time Markov Process (DTMP) proposed in Section 3.3 is used to model the service

behavior.

Similar to the DTMP model in Section 3.3, the DTMP for the energy consumption

analysis is represented by a Discrete-Time Markov Chain (DTMC) {Xn}, which is

divided into a Quiescent layer and M Communication layers, where M is the queue

capacity, as explained in Section 3.3. Each state in {In} and {Cn}m represents the

activity that is conducted by the node during each time unit of Tu, such as sleeping,

transmission, or listening. For example, the duty cycle operations are usually repre-

sented as chains of sleeping states and active states in {In}, and the number of states
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of each type depends on the duty cycle ξ.

Each state v is also associated with an amount of energy, εv, consumed for the

corresponding activity during Tu. The communication and data processing behaviors

of each node are represented by transitions among states in {Xn}. The detailed

explanation of this DTMC is provided in Section 5.3. Based on this DTMC, the

pdf of the single-node energy consumption for communication and data processing,

Ecp(T ), is found for any given duration T .

5.2.1.5 Energy Consumption Due to Topology Randomness

The randomness in topology for random deployment introduces variation in energy

consumption. This randomness is captured by a zero-mean r.v. Etc(T ). We as-

sume nodes are deployed in a 2-D space according to a Poisson point process (PPP).

Etc(T ) is approximated as a Normally distributed variable, and its variance is found

by utilizing a semi-empirical approach. Together with the distribution of the energy

consumption for sensing, Es(T ), in (5.5), and the distribution of the energy consump-

tion for communication and data processing, Ecp(T ), the distribution of total energy

consumption E(T ) is finally derived according to (5.2).

We will also show that when T is large enough, E(T ) asymptotically approaches

the Normal distribution. The mean and the variance are given in Section 5.3.4.

5.2.2 Node Lifetime and Network Lifetime Distributions

The lifetime distribution of a node depends on the energy consumption distribution

during any given period T , and the total capacity of its battery C. The network

lifetime distribution depends on the lifetime distribution for each node, and how the

network lifetime is defined. For different applications and network topologies, the



110

network lifetime can be defined differently [23]. While a complete investigation of

network lifetime with various definitions is out of scope in this dissertation, we focus

on the lifetime defined as follows.

Definition 6. The network lifetime is defined as the duration before the battery de-

pletion of the first node.

In the following, we first explain the Discrete-Time Markov model based analytical

framework, which is used to find the single-node energy consumption distribution.

Then, in Section 5.4, the node lifetime distribution and network lifetime distribution

are found based on the single-node energy consumption distribution.

5.3 Single Node Energy Consumption

Distribution

The energy consumed by communication and data processing for a node is represented

by the energy costs associated with transitions among states in Markov chain {Xn}.

In the following, based on the discussion in Section 3.3, the construction of states and

transitions in {Xn} is discussed.

5.3.1 Structure of Markov chain {Xn}

According to the MAC protocol employed, the structures of {Cn}m and {In} are

parameterized by the following variables: PI , PC , αI , αC , t
s
I , t

s
C , t

f
C , λI , and λC .

The definitions of these variables are given in Chapter 3. Accordingly, the transition

probability matrix, QX , of the entire Markov chain {Xn} can be found based on

(3.11). Then, the equilibrium state probability vector, π, for {Xn} is calculated by
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solving πQX = π, and the solution to vector π is found according to (3.14) and

(3.15) in Section 3.3.

5.3.2 Energy Consumption for Communication and

Processing

The difference between the model developed for the energy consumption analysis and

the one for delay analysis is, there is an energy cost associated with each state in the

DTMC {Xn}. Suppose at the beginning of a time unit Tu, the node is in state v of

{Xn}, and during the time unit, the energy consumption of the node for communi-

cation and data processing is εv. The value of εv is obtained from measurement, or

is calculated according to the specifications of the hardware platform. An example

will be given in Section 5.5 to show how εv is calculated. The cdf and the pdf of

Ecp(Tu), the energy consumption during the time unit, are Gv(e) = u(e − εv) and

gv(e) = δ(e − εv), respectively, where u(·) is the unit step function and δ(·) is the

delta function2. We denote

H
(1)
v,v′(e) = Gv(e)qv,v′ = Pr{Ecp(Tu) ≤ e ∩ v 1→ v′}, (5.6)

h
(1)
v,v′(e) = gv(e)qv,v′ = dH

(1)
v,v′(e)/de, (5.7)

where v
1→ v′ represents the event that {Xn} transitions from state v to v′ in one

time unit, and qv,v′ is the (v, v
′)-th element of the transition probability matrix, QX ,

in (3.11).

For a given period T , the number of time units of Tu is T̂ ∼ T/Tu (since Tu is

usually chosen to be very small, T is approximated as an integer multiple of Tu).

2Although a discrete time Markov process is used for the model, the energy consumption is
continuous. Thus the pdf, as opposed to the pmf, is used to characterize the distribution.
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After T̂ time units (T̂ > 1), the cdf of energy consumption becomes

H
(T̂ )
v,v′(e) = Pr{Ecp(T ) ≤ e ∩ v T̂→ v′} =

∫ e

0

h
(T̂ )
v,v′(ϵ)dϵ

=

∫ e

0

∑
v′′∈S

(h
(1)
v,v′′ ∗ h

(T̂−1)
v′′,v′ )(ϵ)dϵ (5.8)

where S is the set of all states in {Xn}. Therefore, if the matrix of h
(T̂ )
v,v′(e) is denoted

by h(T̂ )(e), then h(T̂ )(e) is the T̂ -fold convolution of h(1)(e).

The energy consumption distribution during T depends on the initial state of the

system at the beginning of this period, which is usually randomly chosen. Thus,

the initial state probability vector is represented by the equilibrium state probability

vector π. After T̂ time units, the pdf and the cdf of the energy consumption are

fEcp(T )(e) = πh(T̂ )(e)1,

FEcp(T )(e) =

∫ e

0

fEcp(T )(ϵ)dϵ, (5.9)

respectively, where 1 is the appropriately dimensioned column vector containing all

1’s.

5.3.3 Energy Consumption Due to Topology Randomness

Our experiments indicate that in WSNs with random deployment, the randomness

of the topology introduces variation to the energy consumption. This variation is

small when T is short, and increases quadratically with T . It is modeled by a zero-

mean Normally distributed r.v. Etc(T ). This approximation is accurate, because our

experiment in Section 5.6.6 shows that, for parameters of interests, the achievable

lifetimes given by the proposed framework have an error less than 3% for single node.
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The variance of Etc(T ) is expressed as

σ2
tc(T ) = cT 2, (5.10)

where c is the scaling coefficient function determined by network parameters, such as

node density ρ, locally generated traffic rate λlc, and how the employed protocols are

impacted by local density variation. For given network parameters and protocols, c

is a constant.

To calculate c for a given set of parameters and protocol, a semi-empirical approach

is used. Simulations are conducted to find an expression of c as a function of network

parameters, such as ρ and λlc. The obtained c is then used to derive the energy

consumption distribution of nodes with the given protocol.

In Section 5.5, a detailed analysis of (5.10) will be provided for an anycast protocol.

The deterministic deployment, e.g., grid topology, is a special case with no ran-

domness in topology. Thus, the scaling coefficient, c, is zero.

5.3.4 Asymptotic Energy Consumption Distribution

If a QBD process is modeled by a DTMC, and each state in the DTMC is associ-

ated with a cost, then the sum of the total cost during a given period T asymptot-

ically approaches the Normal distribution as T → ∞ [66]. Thus, considering the

energy consumption, εv, at each state v as the cost, the total energy consumption for

communication and data processing during T asymptotically approaches the Normal
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distribution, whose mean and the variance are given by

lim
T→∞

µcp(T ) = T̂ µcp,u = T̂πε, (5.11)

lim
T→∞

σ2
cp(T ) = T̂ σ2

cp,u = T̂

(∑
v∈S

(εv − πε)2πv + 2βε

)
, (5.12)

respectively, where T̂ = T/Tu is the number of time units in T , µcp,u, and σ2
cp,u

are the mean and variance of Ecp during each time unit Tu. Moreover, π is the

equilibrium state probability vector of {Xn}, S is the set of states in {Xn}, and πv

is the equilibrium state probability for state v. Finally, ε is the vector of εv for each

state v in {Xn}, and β is an intermediate vector variable which is obtained by solving

the following set of equations [66]:

β(QX − I) = −γQX , (5.13)

β1 = 0, (5.14)

where γ is a row vector whose v-th element is (εv − πε)πv.

Then, the asymptotic distribution for Es(T ), the energy consumption by sensing,

is also derived. For each sensor k, when T → ∞,
⌊

T
Ts,k

⌋
≈ T

Ts,k
≈
⌊

T
Ts,k

⌋
+ 1. Thus,

(5.5) becomes

fEs(T )(e) ≈ δ

(
e−

K∑
k=1

εkT

Ts,k

)
. (5.15)

In other words, the energy consumption is approximately linear to T with a constant

coefficient equal to
∑K

k=1 εk/Ts,k.

Therefore, the following results are obtained:

Theorem 3. When T → ∞, the energy consumption of a node during T asymptoti-
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cally approaches the Normal distribution, with the mean and variance linear to T and

given by

µ(T ) = T̂

(
µcp,u +

K∑
k=1

εkTu
Ts,k

)
, (5.16)

σ2(T ) = T̂ σ2
cp,u + cT 2, (5.17)

where T̂ = T/Tu is the number of time units in T .

Proof. The proof is trivial by combining (5.11), (5.12), (5.15), and (5.10).

5.4 Lifetime Distribution Analysis

Using the pdf of energy consumption fE(T )(e) in (5.9) for any given period T , the

lifetime distribution of a node, and further, the entire network, can be found as

follows.

5.4.1 Single-Node Lifetime Distribution

The r.v. of lifetime for a given node, L(C), is a function of its total battery capacity

C. Initially, the node has a battery residual of C. After duration T , the pdf of

remaining energy in the battery is fC−E(T )(e). The probability that the node has a

shorter lifetime than duration T is the probability that the remaining energy after T

is lower than 0. Thus, the cdf of the node lifetime is

FL(C)(T ) = Pr{L(C) ≤ T} = Pr{C − E(T ) ≤ 0}. (5.18)

As explained in Section 5.3.4, when T is large, E(T ) ∼ N (µ(T ), σ2(T )), where µ(T )

and σ2(T ) are given by Theorem 3. Thus, the cdf of single-node lifetime is approxi-
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mated as

FL(C)(t) ≈ Q

(
µ(t)− C√

σ2(t)

)
. (5.19)

5.4.2 Network Lifetime Distribution

Since every node needs to be alive during the network lifetime, the network lifetime

(NL) distribution is obtained for a WSN with random deployment as:

FNL(t) ≈ 1−
∏
x∈A

(1− pex(x) Pr{L(x, C(x)) ≤ t}), (5.20)

where L(x, C(x)) is the lifetime for a node located at x, if any, with battery capacity

C(x). Using the approximation in (5.19) for the single-node lifetime distribution, the

network lifetime distribution is approximated by

FNL(t) ≈ 1−
∏
x∈A

(
1− pex(x)Q

(
C(x)− µ(x, t)√

σ2(x, t)

))
, (5.21)

where µ(x, t), σ2(x, t) are given by Theorem 3 for the node located at x. Moreover,

A is the network area. To calculate the product, area A is discretized into small areas

of size ∆x, and pex(x) is the probability that there exist a node in the small area

around x, and is a function of the network density ρ. It is obtained by pex(x) = ρ∆x.

For a network with deterministic deployment containing N nodes, the network

lifetime distribution, and its Normal approximation are obtained by

FNL(t) = Pr{NL ≤ t} = 1−
∏
x∈X

Pr{L(x, C(x)) ≥ t} (5.22)

≈ 1−
∏
x∈X

Q

(
µ(x, t)− C(x)√

σ2(x, t)

)
, (5.23)
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where X is the set of locations for all the nodes in the network.

A special case is also considered for the random deployment, where nodes are

deployed in a circular plane of radius R, and generate a homogeneous amount of local

traffic to a sink, which is located at the center of the plane. The battery capacity, C,

for each node is the same. Moreover, each node forwards packets to neighbors closer

to the sink. In this scenario, the energy consumption and lifetime analysis can take

advantage of the symmetry of the topology as explained next.

The entire circular plane is discretized into concentric narrow rings with width

∆r indexed by their distance to the sink, r. Each node senses the physical events,

and generates packets with traffic rate λlc. By symmetry, the relay traffic λre(r) is

the same for all nodes in the same ring r. Hence the variables for a node in ring r

are indexed by the distance r. Then, the distribution of the network lifetime, and its

Normal distribution approximation are

fNL(t) = 1−
R∏
r=0

π∏
θ=−π

(1− pex(r) Pr{L(r, C) ≤ t}) ,

fNL(t) ≈ 1−
R∏
r=0

π∏
θ=−π

(
1− pex(r)Q

(
C − µ(r, t)√

σ2(r, t)

))
, (5.24)

respectively, where pex(r) = ρ∆r∆θr, and µ(r, t), σ2(r, t) are given by Theorem 3 for

nodes in ring r.

5.5 Case Study: Anycast Protocol

In this section, the techniques in Sections 5.3 - 5.4 to capture the energy consumption

and lifetime distributions are utilized for an anycast protocol, as described in Section
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Figure 5.1: The process of transmitting beacon packets.

2.3.2. The anycast protocol studied in this section is the same as the one being studied

in Section 3.6. Thus, the process of constructing the DTMC {Xn} is based on the

discussion in Section 3.6. The DTMC {Xn} for the anycast protocol is presented

in Figure 3.6. Then, the energy consumption distribution for each node is obtained

accordingly. Finally, the lifetime distributions for each node and the network are

found.

For the energy and lifetime analysis with anycast protocol, we assume that nodes

are deployed in a circular plane of radius R, have a homogeneous battery capacity C,

and generate a homogeneous amount of local traffic to a sink located at the center

of the plane. Because of the symmetry, node-specific variables are the same for each

narrow ring with radius r, and are indexed by r. In the following analysis, when there

is no ambiguity, the subscript r in ring-specific variables is omitted.

5.5.1 Energy Consumption in Each State

At any time, a typical WSN node conducts one of the following communication tasks:

transmission, listening, receiving, and sleeping. Listening and receiving is considered

the same since most popular architectures, such as Mica2 [88] and TelosB [90], con-

sume similar power for these tasks. We also ignore the energy consumed for the data

packet transmission. This is a valid simplification because majority of the energy is
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consumed for idle listening and beacon transmissions. It is validated by testbed and

simulation results in Section 5.6 that for parameters of interests, these assumptions

are accurate. Therefore, there are three types of states in {Xn}: Beacon transmission,

Sleeping, and Listening. Nodes consume a specific amount of energy εv in each state

v, as will be discussed in the following.

In practice, since battery voltage drops over time, battery capacity is often mea-

sured with normalized voltage. Therefore, energy is represented in the units of A·sec.

In sleeping and listening states, the energy consumed during a time unit, Tu, are

εsl = IslTu, and εli = IliTu, respectively, where Isl and Ili are the measured current

drawn from the battery in the sleep and listening modes, respectively.

The power consumption when the node is transmitting beacon packets, εb, de-

pends on the beacon transmission process shown in Figure 5.1. For every beacon

packet, the node waits for a uniformly distributed random initial backoff with a max-

imum duration Tmax
ibo , and whenever the channel is sensed busy before transmission, a

congestion backoff is performed, which is also uniformly distributed with a maximum

duration Tmax
cbo . Then, the transmission takes a duration of Ttx, which is determined

by the packet size and the data rate. Finally, after the transmission, a timeout period

of Tto is spent to wait for any possible CTS response. Therefore, the node transmits

beacons only in a portion of time, and the portion, ωb, should be obtained first to

determine εb. For a node within ring r, ωb is expressed as

ωb(r) =
Ttx(

Tmax
ibo

2
+

Tmax
cbo pbusy(r)

2(1−pbusy(r))2
+ Ttx + Tto

) , (5.25)

where pbusy(r) is the probability of sensing the channel busy, and is derived as follows.

First, as shown in Figure 5.2(a) (Figure 3.7 is redrawn here for convenience),

the region within the transmission range of location x, C(x), is divided into small
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Figure 5.2: The feasible region and infeasible region around node x, divided into
small areas. Figure 3.7 is redrawn here for convenience.

areas according to the polar coordinates centered at the sink. Each small area has

a size approximated by ∆r∆θr. Then, the probability of sensing the channel busy,

pbusy(r), is the probability that there is at least one node transmitting a packet in

these areas. Considering that in WSN applications, sleeping cycles are usually long

and duty cycles are usually very small, a sender node often has to wait for a relatively

long period transmitting beacon packets before receiving a CTS response. Therefore,

beacon packets are considered the dominant packets in the channel, and the major

reason of a busy channel [49]. Thus, in the small area (r : r + ∆r, θ : θ + ∆θ),

denote pex(r) as the probability that there exists a node in this area, and ϕb(r) as the

probability that at any time a node in this area, if it exists, is transmitting a beacon

packet. Then pbusy(r) is given by

pbusy(r) = 1−
∏

y=(r′,θ′)∈C(x)

(
1− pex(r

′)ϕb(r
′)
)
, (5.26)
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where pex(r) is given by

pex(r) = ρ∆r∆θr, (5.27)

where ρ is the node density. The probability that a node in this area is transmitting

a beacon packet, ϕb(r), is given by ϕb(r) = πb(r)ωb(r), where πb(r) is the total

probability that the node is in one of the beacon transmission states in the DTMC

{Xn}, and is given by adding the probabilities in the equilibrium state probability

vector, π(r), corresponding to the beacon transmission states. Therefore, according

to (5.26), for nodes located at x in ring r, the portion of time in which they transmit

beacon messages, ωb(r), depends on its values for other nodes in its neighborhood,

C(x). An iterative procedure is used for all r’s to calculate ωb(r) at the end of Section

5.5.

Then, εb(r) is obtained by

εb(r) =
(
Ili(1− ωb(r)) + Itxωb(r)

)
Tu, (5.28)

where Ili and Itx is the measured current when the node is listening and transmitting,

respectively.

Finally, for this case study, we assume that the data processing time is far shorter

than a time unit Tu. Since data processing is conducted when packets are generated

or received, a fixed amount of energy, εp, is added to the energy consumption in the

first state of each {Cn}.
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5.5.2 Communication and Data Processing Energy

Consumption

The other parameters in {Xn}, i.e., transition probability matrices and traffic rates

in {In} and {Cn}, are obtained according to the discussion in Section 3.6. Then, the

equilibrium state probability vector, π(r), for the DTMC {Xn} is obtained for each

node x. It should be noted that while we solve ωb(r), it is assumed that ωb(r
′) for all

nodes y in range are known. This dependency is solved in an iterative manner. First,

initial guesses of ωb(r) for all rings are set to all 0’s in our evaluation. Then, updated

values of ωb(r) are calculated. The iteration terminates when the difference between

two consecutive iterations is negligible for each ring. Then, the energy consumption

during a beacon time unit, εb(r), is obtained according to (5.28). Finally, the com-

munication and data processing energy consumption distribution for any single node

is calculated according to (5.9).

5.5.3 Topology Randomness

The variation of energy consumption and lifetime distribution introduced by topology

randomness is captured by a zero-mean r.v. Etc(T ) with variance given in (5.10). In

the following, the scaling coefficient, c, is empirically obtained for the anycast protocol

for a node located in the ring r.

To calculate the scaling coefficient c, simulations are conducted with the anycast

protocol. The energy consumption for each node are measured and the variance is

recorded. The results are then used to find the scaling coefficient c using least squares

regression. For given values of node density ρ, locally generated traffic rate λlc, and
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the duty cycle ξ, the scaling coefficient c is obtained by

ĉ = argmin
c

∑
T∈T

(
σ2(T )− T̂ σ2

cp,0 − cT 2
)2

=

∑
T∈T σ

2(T )T 2∑
T∈T T

4
, (5.29)

where T̂ σ2
cp,0 is the variance of the energy consumed during T by communication and

data processing, and is given by (5.12). T is a set of time durations in which the

energy consumption is measured. It is set to {5, 10, 15, · · · , 50} hours in our studies.

Our empirical studies in Section 5.6.3 show that for the anycast protocol, the

empirical expression for the scaling coefficient c is obtained as

c(λlc, ρ) = a(λlc)
2ρ−2, (5.30)

where a is a constant irrelevant to λlc, ρ, and ξ. It is obtained by simulations for a

single set of parameters as follows. For a random network with density ρ∗ and locally

generated traffic rate λ∗lc, 100 realizations of topologies are generated. Then, the

energy consumption is recorded, and the variance of energy consumption, (σ∗)2(T ),

during T is calculated for each T ∈ T. The corresponding scaling coefficient c∗ is

then calculated according to (5.29) for λlc = λ∗lc and ρ = ρ∗. Thus, the constant a is

obtained by solving (5.30) using λ∗lc, ρ
∗, and c∗.

Therefore, the variance of the topology compensation component is given by

σ2
tc(T ) = a(λlc)

2ρ−2T 2. (5.31)
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5.5.4 Total Energy Consumption and Lifetime Distribution

Finally, additional energy consumed by sensing activities are considered. The distri-

bution of total energy consumption of the node is then obtained by (5.5) and (5.3).

With the energy consumption distribution for nodes in each ring known, the life-

time distribution for nodes in each ring, L(r, C), is directly obtained by (5.19). Then,

the distribution of the network lifetime, and its Normal distribution approximation

are obtained by (5.24).

5.5.5 Extension to Other Protocols

The techniques in this section for the anycast protocol can be used to obtain the

energy consumption and the lifetime distribution for other protocols, for example,

TDMA protocols and RI-MAC [86]. First, the Markov chain for {Xn} should be

constructed according to the specific protocol behavior. Then, the single-node energy

consumption distribution can be obtained by (5.9). Finally, the single-node and

network lifetime distributions are found using (5.19) and (5.20), (5.21), respectively.

The detailed solutions for other protocols are out of the scope of this work.

5.6 Analytical Results and Empirical Validations

To validate the accuracy of the proposed energy consumption and lifetime analytical

framework, testbed experiments with 28 Crossbow TelosB motes and computer sim-

ulations using TOSSIM [56] are conducted. The distribution of single-node energy

consumption, single-node lifetime, and the network lifetime for the anycast MAC pro-

tocol are calculated using the developed model and the asymptotic approximation.

The results are then compared with the testbed experiments and simulations.



125

5.6.1 Experiment and Simulation Setup

5.6.1.1 Testbed Experiment Setup

Testbed experiments are conducted to validate the developed model for determin-

istic deployment, a special case for random deployment. Experiments for random

deployment require at least hundreds of realizations of the random topology before

valid statistical information can be gathered. Therefore, it is infeasible to validate our

model solely using testbed experiments for random deployment. Testbed experiments

are used to validate the model in small-scale deployments and validate the accuracy

of computer simulations, which are then utilized to validate the proposed model for

random deployment in larger scale and longer duration.

In the testbed experiments, nodes are placed in a circular area of radius R = 4 m,

and the transmission power is set to −20 dBm, corresponding to a communication

range of approximately 2.5m. A 1Ω resistor is placed in the circuit loop for each node,

and the current drawn from the batteries of each node is obtained by measuring the

voltage drop over the resistor. The voltage drop is measured using NI-USB 6210

DAQ modules [89] at 10kHz, converted to the current, and logged for 24 hours, as

described in Section 2.4.1.2.

The values of radio, timing, and protocol parameters are listed in Table 5.1,

whereas the parameters for channel model [107] used in the analysis and simulations

are listed in Table 5.2.

5.6.1.2 Simulation Setup and Improvements

The computer simulations are performed using TOSSIM on FireFly [43]. To speed up

TOSSIM simulations and obtain the simulation results for lifetime-scale durations,

several techniques are utilized, as described in Section 2.4.2. First, the simulations
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Table 5.1: List of radio, timing and protocol related constants and parameters.

Group Notation Description Default Value

Radio

lp data packet size 40 bytes

lm beacon and CTS message size 22 bytes

Rb channel bit rate 250 kbps

Timing

Tp duty cycle period 10 s

Ta active period 5 s

Tb beacon transmission timeout 10 s

Tmax
ibo maximum initial backoff 9.77 ms

Tmax
cbo maximum congestion backoff 2.44 ms

Ttx data packet transmission time 1.6 ms

Tto beacon transmission interval 12 ms

Protocol
rth threshold radius 2.7 m

ψth threshold SNR 10 dBm

on 100 different topologies are conducted in parallel on different nodes of the super-

computer. Second, TOSSIM code is modified such that all log and debug information

is reduced, except for the minimum necessary log on the energy consumption. This

reduces the time spent on time-consuming I/O operations. Third, to further reduce

the simulation time, the realistic channel model in TOSSIM is replaced by a simplified

channel model, where packet transmissions are always successful if the sender-receiver

distance is within a certain range, regardless of channel errors or collisions. The range

is chosen such that at this distance, the average received signal SNR is equal to the

SNR threshold used in the anycast protocol. This technique greatly reduces the time

spent on communication simulations.

Each of the three techniques substantially increases the simulation speed for a
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Table 5.2: List of channel-related constants and parameters.

Group Notation Description Default Value

Channel

Pn noise floor −105 dBm

PL(D0) pass loss at reference distance 52.1 dB

D0 reference distance 1 m

η pass loss exponent 3.3

σs standard deviation of log-normal
fading/shadowing

5.5

Table 5.3: The simulation time and speed-up comparison for a 1-day simulation.

Number of Nodes 80 160 240

Network Density 0.028 0.057 0.085

Sim Time (s)

Original 4,848 10,205 17,633

LogRedu 816 1,638 2,705

LogRedu + SimpChan 56 83 103

Speed-up (%)
LogRedu 5.94 6.23 6.52

LogRedu + SimpChan 86.6 123.0 171.2

typical network with radius R = 30 m and various number of nodes, as shown in Table

5.3. The speed-up is defined as the ratio between the simulation time required by the

original simulation (Original) and when each of the speed-up technique is applied.

The speed-up by parallelizing simulations on multiple computers is straightforward

(equals to the number of computers used) and is not shown in the table. For the

other speed-up techniques, log reduction (LogRedu) and simplified channel model

(SimpChan), the time to simulate 1 day is shown in Table 5.3, as well as the speed-

up ratio compared to the original simulation. The result reveals that both techniques
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improve simulation speed greatly. By utilizing log reduction, simulation speed is

increased by approximately 6 times. By utilizing log reduction and the simple channel

together, the simulation speed is increased by around 87−171 times. Moreover, with

higher node density (160 nodes, and 240 nodes), the speed-up is more significant.

The first two techniques, parallelization and log reduction, increase simulation

speed and introduce no error on the result. The simplified channel model, however,

while further speeds up the simulation by more than 15 times, may introduce errors.

The main reason is because by ignoring collisions, the simplistic channel model over-

estimates the channel quality, and thus will introduce error in heavy traffic scenarios.

This will be illustrated in Section 5.6.5.

In the following, we show that the developed framework is highly accurate using

testbed experiments and simulations.

5.6.2 Validation of the Single-node Energy Analysis

We first analyze the energy consumption distribution in (5.9) for the deterministic

deployment. The energy consumption distributions during T = 60 s for two nodes

with distances of 2.6 m and 3.5 m to the sink are measured. The cdf s of the measured

energy consumption are shown in Figure 5.3 with the analytical model results. It can

be observed that the error of the analytical cdf is less than 5% compared to the

empirical measurements for each node. It is also observable that the cdf s for the

node at r = 3.5 m exhibit a steep increase at the energy level of 0.6 A·s. This is

because there is a high probability that the node consumes exactly 0.6 A·s energy,

which corresponds to the case where nodes are performing their normal duty cycle

operations.

The same network topology is simulated using the original TOSSIM. The results
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Figure 5.3: cdf of the energy consumption during 1 min. Testbed experiments,
simulation, and analytical results are shown.

of the energy consumption distribution for each of the two nodes are also shown in

Figure 5.3. The results suggest that the simulation results are also accurate compared

to the empirical distribution with an error rate less than 5%. Therefore, in further

experiments, we use simulation results to validate our model for random deployment

networks in larger scale and longer duration.

5.6.3 Obtaining the Scaling Coefficient

In this subsection, the semi-empirical approach to obtain the topology compensa-

tion component for the anycast protocol is provided. Randomly deployed networks

with PPP node locations are considered. Simulations are conducted to identify the

relationship between the scaling coefficient c and network parameters, such as node

density ρ, locally generated traffic rate λl, and the duty cycle ξ.

First, simulations are conducted with fixed duty cycle and traffic rate to evaluate

the relation between c and the network density ρ. In the network with radius R, a
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Figure 5.4: The scaling coefficient c as a function of network density ρ in terms of
total number of nodes N . In (a) the per-node traffic rate is fixed. In (c) the total
traffic rate is fixed. cN2 and cN4 are used in (b) and (d) to reveal the empirical
expression of c.

total of N = 90, 100, · · · , 230 nodes are deployed uniformly (equivalent to Poisson

point process). The duty cycle is ξ = 0.2, and the per-node locally generated traffic

rate is λlc = 0.05 pkt/min. The value of c in each simulation is shown in Figure 5.4(a),

and the value of cN2 is shown in Figure 5.4(b). It is revealed that, the value of cN2

is constant, and thus c is proportional to N−2, or ρ−2, when ξ and λlc are fixed. Note

that the peaks in Figure 5.4(b) is due to the relatively small total number of random

topology instances (i.e., 100). Higher number of instance would possibly smoothen
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Figure 5.5: (a) The scaling coefficient c and (b) the expression of cλ−2
lc as functions

of per-node traffic rate λlc to reveal the empirical expression of c. In (c) the scaling
coefficient c is shown as a function of the duty cycle ξ.

the peaks, but leads to significantly higher computation cost in simulations.

Then, for each different total node number, the per-node traffic rate is varied, so

that the total locally generated traffic rate is constant as 80 pkt/min, i.e., λlc = 80/N

pkt/min. The value of c and cN4 are shown in Figure 5.4(c) and 5.4(d), respectively.

It can be observed that, the value of cN4 is constant, suggesting that c is proportional

to N−4, or ρ−4, when ξ is fixed, and λlc = 80/N .

Simulations are also conducted for different values of per-node traffic rate λlc, with

fixed duty cycle ξ = 0.2, and fixed total node number N = 160. The value of c and
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c/(λlc)
2 are shown in Figure 5.5(a) and 5.5(b), respectively. It is shown that, c/(λlc)

2

is constant, and thus, c is proportional to (λlc)
2.

Finally, the effect of various values of duty cycle ξ is investigated, and is shown in

Figure 5.5(c). It can be observed that, the variance of energy consumption does not

change too much for different duty cycle values. Hence, in the empirical approach,

the duty cycle is ignored when calculating the energy consumption variance.

Then, all combined, the empirical expression for c is obtained as (5.30). Using

the simulation result for ρ∗ = 0.057 nodes/m2, λ∗lc = 0.05 pkt/min, and ξ∗ = 0.2, the

scaling coefficient c is expressed as

c = 3.1× 103ρ2λ2lc. (5.32)

5.6.4 Validation of the Normal Distribution Approximation

The asymptotic Normal distribution approximation of energy consumption for large

T is validated using simulations. In the following simulations using the original

TOSSIM, a network in a circular area with radius R = 30 m is assumed and the topol-

ogy is randomly generated according to a Poisson distribution with density ρ = 0.05.

Traffic rate is 0.1 pkt/min, rth = 10 m, duty cycle is 0.2, and the transmission power

is −15 dBm for all nodes. The threshold SNR is set to ψth = 10 dBm, and the com-

munication range is 10m. In the following, we convert the network density ρ into the

average node degree, i.e., the number of neighbor nodes in the communication range

of each node, since it is a more intuitive presentation of density.

Each topology is simulated for 10 days, and 100 different topologies are generated.

In addition, additional energy consumptions for sensing and data processing are added

to simulate a fully operational WSN application. For each node, a sensor is powered
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Figure 5.6: cdf of the energy consumption during longer periods. As the duration
increases, the energy consumption approaches the asymptotic Normal distribution.

for 5ms per 3 seconds, drawing a current of 10 mA. To process each generated and

forwarded packet, each node draws an additional 5 mA current during 0.5 ms.

The cdf of energy consumption for node at r = 27 m for T = 2, 10, and 30 minutes

are shown in Figure 5.6(a) - 5.6(c). The cdf of the asymptotic Normal distributions

in Theorem 3 are also shown.

It can be observed in Figure 5.6(a) - 5.6(c) that as the duration increases, the

energy consumption distribution converges to the asymptotic Normal distribution.

We further validate the accuracy of the asymptotic approximation using Kurtosis [44,
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94], which is a quantitative measure of the similarity between a particular distribution

and the Normal distribution. For a r.v. z, Kurtosis is defined as

κ(z) =
µ4(z)

σ4(z)
, (5.33)

where µ4(z) is the fourth moment of z, and σ(z) is the standard deviation. The closer

κ(z) is to 3, the closer z is to a Normal distributed variable.

The energy consumption during 1, 2, 4, . . . , 128 minutes for a node at r =

27 m are recorded to evaluate the Kurtosis. The results shown in Figure 5.6(d)

reveals that for values of the duration T above 16 mins, the Kurtosis of the energy

consumption converges to 3, which suggests that its distribution converges to the

Normal distribution.

It is also found that generally the error of the mean and variance of energy con-

sumption obtained by the model increases with r, the distance to the sink, compared

to the experiment results. Thus, in the following experiments and simulations, we

focus on a representative node at r = 27 m. This node has the highest error among

nodes that are not affected by experiment and simulation artifacts introduced to

nodes located at the rim of the network.

5.6.5 Model Validation with Different Network Parameters

To reveal how the accuracy is affected by different network parameters, simulations

are conducted with various traffic rate, duty cycle, and node density, and the re-

sults are compared with the analytical results from the proposed framework. Both

original TOSSIM channel model (TOSSIM) and simplified TOSSIM channel model

(S-TOSSIM) are used. The default traffic rate is 0.05 pkt/min, the default duty cycle

is 0.2, and the default node degree is 13.3. The mean and variance of the energy
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consumption by a node 27 m apart from the sink during 1 hour are shown in Figures

5.7 and 5.8 for various parameters. Results provided by the analytical model are also

shown.
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(c) Traffic rate varies, mean

Figure 5.7: The mean of energy consumption during 1 hour for a node located at 27
m from the sink.

The mean energy consumption during 1 hour when only the duty cycle, the density,

and the traffic rate is varied are shown in Figure 5.7(a) - 5.7(c), respectively. The

corresponding variance of energy consumption are shown in Figure 5.8(a) - 5.8(c).

It can be observed in Figure 5.7(a) that the energy consumption increases almost

linearly with the duty cycle. Although the energy consumption is related to other

network and protocol parameters as shown in Figure 5.7(b) and 5.7(c), the duty cycle
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Figure 5.8: The variance of energy consumption during 1 hour for a node located at
27 m from the sink.

is the major factor that affects the energy consumption. In Figure 5.7(c), when the

traffic rate is high, S-TOSSIM becomes less accurate due to the simplified channel

model. Thus, the S-TOSSIM result is affected by simulation artifacts, which cause

the S-TOSSIM curve to separate from the other results as the traffic rate increases.

On the other hand, the variance of the energy consumption is less sensitive to duty

cycle. It fluctuates between around 0.005 − 0.015A2s2 when the duty cycle changes

from 0.05 to 0.5, as shown in Figure 5.8(a). However, the influence of network density

and traffic rate is higher, as depicted in Figure 5.8(b) and 5.8(c). The variance is

increased around 13 times when the node degree is reduced from 22.2 to 8.89, and
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is increased around 180 times when the traffic rate is increased from 0.025 to 0.6

pkt/min, as explained in the following.

When the density increases, as depicted in Figure 5.7(b), generally the node con-

sumes less energy on average, although this trend is less obvious when the node degree

is higher than 13. This is because if the density is low, when transmitting beacon

packets, each node needs to wait for a longer time before other nodes in the feasible

region wake up, thus consuming more energy. The variance of energy consumption in

Figure 5.8(b) is also decreasing, because higher density increases the chance of pack-

ets being transmitted with a short beacon transmission time. Thus, the variance of

the beacon transmission time is low, leading to a low variance of energy consumption.

Finally, it can be observed in Figure 5.7(c) that when traffic rate increases, the

mean energy consumption at first decreases for values lower than 0.5 pkt/min, and

then increases for values higher than 0.5 pkt/min. The reason is that when each

node is transmitting beacon packets, it does not respond to other beacon packets.

Therefore, with a higher traffic rate, more nodes are transmitting, and fewer are

available to send CTS responses. Thus, transmitting nodes need to wait for a longer

time, and the energy spent on transmission is higher. With a moderate traffic rate,

available relay nodes are enough, transmitting nodes can finish their transmissions

and go to sleep early, effectively saving energy. With a lower traffic rate, however,

the probability that nodes relay a packet and go to sleep early is low. Hence, energy

consumption is higher than a moderate traffic rate.

On the other hand, as shown in Figure 5.8(c), the variance of energy consumption

is monotonically increasing with higher traffic rate. This is because when the traffic

is lighter, nodes are more likely performing quiescent operations and the beacon

transmission periods are shorter. Thus, the activities are more homogeneous, and the

variance of energy consumption is lower; when the traffic is heavier, nodes perform
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beacon transmissions with a higher probability, and transmit for longer periods of

time. Thus, nodes are more likely performing various activities, resulting a higher

variance of energy consumption.

The results also suggest that the proposed framework provides accurate results

for the mean of energy consumption with an error less than 3.5% (see Figure 5.7(a) -

5.7(c)). For the variance, the error is higher but still less than 21% (see Figure 5.8(a)

- 5.8(c)). The only scenarios where the framework provides less accurate results are

when the traffic rate is very high (≥ 0.4 min/pkt). This is because when the traffic

rate is high, the assumption that collision is negligible in Section 5.5.1 is no longer

accurate. Nevertheless, since the majority of WSN applications operate with low

traffic rate, the proposed framework is accurate in most of the scenarios.

Moreover, as expected, when the traffic rate is high, or when the network density

is low, the simplified channel model in TOSSIM simulations becomes less accurate

compared to the original channel model, as shown in Figures 5.7(b), 5.7(c), 5.8(b),

and 5.8(c). This is because of the optimistic estimation of the channel condition when

the density is low or the traffic is heavy. In the following, to speed up lifetime-scale

simulations, only the simplified channel model is used and the network density and

traffic rate are chosen to represent realistic WSNs scenarios, i.e., very heavy traffic or

very low density scenarios are not analyzed.

5.6.6 Validation of Lifetime Distributions

In the following, the lifetime distribution analysis in Section 5.4 is validated using

simulations. The network is assumed to be in a circular plane with a radius of 30 m,

and contains 160 nodes. Each node generates data packets and transmits them to

the sink located at the center of the network. The battery capacity is assumed to be
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Figure 5.9: The network lifetime distribution and the lifetime distribution of a node
at r = 27 m.

1500 mAh for all nodes. The locally generated traffic rate for all nodes is λlc = 0.1

pkt/min, and the duty cycle is ξ = 0.05. Other network and protocol parameters are

the same as previous experiments.

The single node lifetime distribution of a node located at distance 27 m to the

sink, and the network lifetime distribution are shown in Figure 5.9. The result shows

the probability to achieve a certain lifetime, or the lifetime achievable for a given

probability. Compared to the simulations, for the same probability (higher than 0.2),

the achievable lifetimes given by the proposed framework only have an error less than

3% for single node and 6% for the network. Considering that the desired probability

in practice is usually higher than 0.5, the proposed framework yields very accurate

results. The higher error of network lifetime is because the calculation of network

lifetime requires the calculation of lifetime for all nodes in the network. Thus, any

inaccuracy in node lifetime calculation will be accumulated and contributes to a larger

error in network lifetime distribution.



140

On the other hand, the proposed framework outperforms simulations dramatically

in terms of calculation speed. Even with multiple speed-up techniques described

in Section 5.6.1, to determine the lifetime of a node in a typical setup, it requires

about 3 hours for simulations with the simplistic channel model, and about 60 hours

with the original TOSSIM channel model. In contrast, for any network setup in the

experiments below, the analytical calculation requires only one computing unit, and

takes less than a minute.

5.6.7 Network Design Observations

Next, as an example to show how the developed framework can be used to help

network design, we investigate the relationship between the probability of achieving

a given node or the network lifetime, and various network parameters, using the

lifetime distribution obtained by (5.19). In each of the following tests, we consider a

grid network. The network density ρ, the duty cycle ξ for all nodes, and the traffic

rate λlc for all nodes are varied, respectively. The default values for these parameters

are 0.052, 0.2, and 0.1 pkt/min. The network radius is 20 m. The battery capacities

for all nodes are C = 2000 mA·H. Other parameters are kept unchanged from the

previous experiments.

The probability that the lifetime of a node at distance r = 12 m is longer than 500

hours is shown in Figure 5.10(a) to 5.10(c). The results reveal that for the maximum

probability of achieving this lifetime, the density should be no less than 0.053. It can

be noticed that the probability increases dramatically from around 0 to almost 1 when

the density changes within 0.002 node/m2 from 0.095 node/m2 to 0.097 node/m2.

This steep change is because the variation of network lifetime is small when the

topology is deterministic. Moreover, reducing duty cycle directly reduces the energy
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Figure 5.10: The probability of achieving a node lifetime (a, b, c) and a network
lifetime (d) of 500 hours with various densities, traffic rates and duty cycles.

consumption, as observed in Figure 5.10(b). Finally, either increasing or reducing the

traffic rate from 0.05 pkt/min results in a decrease of the probability of achieving this

lifetime. The relationship between the probability and the network parameters are

due to the relationship between energy consumption and the parameters, which are

all explained in Section 5.6.5.

In the same network settings, the network lifetime distribution is also examined.

The probability of achieving a 500 hours network lifetime (see (5.10)) is shown in

Figure 5.10(d) for various network densities. To achieve this lifetime, the optimal
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density is greater than 0.097, which is higher than the value for a single node lifetime

guarantee in Figure 5.10(a). This is as expected because the network is only consid-

ered functional when all nodes are functional, which is a much stronger requirement

than for a single functional node.

5.7 Conclusions

In this chapter, the probabilistic analysis of the energy consumption is provided.

Energy consumption for communication, data processing, and sensing are all captured

by the analytical framework. The energy consumption distribution for each node is

derived. It is shown that, when the time duration is long, the energy consumption

converges to a Normal distribution, and the mean and variance of such distribution

are also provided. With the help of energy consumption distribution, the lifetime

distributions for each node and the entire network are derived. The developed model

is validated by both testbed experiments and TOSSIM simulations. The results

show that the developed framework accurately models the distribution of the energy

consumption and captures the randomness of multi-hop WSNs.
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Chapter 6

Probabilistic Network

Optimization

In this chapter, the results from the analysis models developed in Chapters 3, 4,

and 5 are used to develop a probabilistic optimization framework for WSNs, which

is used to demonstrate how to make decisions on choosing the optimal network pa-

rameters according to application requirements. The framework utilizes two types

of probabilistic measures of QoS performance metrics: 1) for a given probability p,

the performance metrics that can be achieved with at least probability p, and 2) the

differences of performance metrics between two quantiles at p1 and p2. Given these

probabilistic QoS performance constraints, the developed framework solves optimal

network parameters for probabilistic QoS performance objectives. An anycast proto-

col is used to illustrate the application of this framework. Extensive evaluations are

conducted to find the optimal network parameters for this protocol. Guidelines for

designing networks and choosing optimal parameters for WSNs are provided using the

optimization framework. It is also shown that mean analysis may lead to inaccurate

results in network design due to lack of statistical information, which is intrinsically
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provided by probabilistic analysis.

In this chapter, we first provide a study on related work in Section 6.1. In Section

6.2, the probabilistic optimization framework is formulated and a heuristic solution is

presented. Then, in Section 6.3, a case study on the anycast protocol is provided, with

a unified model for the end-to-end delay and the network lifetime based on the analysis

in Chapters 3 and 5. Then, in Section 6.4, numerical results are presented from

extensive evaluation experiments. Trends and insights that are not easily observable

using traditional analyses are obtained. Finally, conclusions for this chapter are given

in Section 6.5.

6.1 Related Work

Evaluating QoS provided by networks has been a major subject of research. QoS

issues and techniques are intensively investigated for the the communication quality

in traditional networks [7, 14, 19, 61, 62, 64]. For WSNs, the performance optimization

has been a heated area of research ever since the concept of WSN was first introduced.

The technique of Network Utility Maximization (NUM) has been applied to wireless

networks and WSNs [16, 29, 75], and stochastic NUM is also proposed in [85, 102].

However, these studies mainly focus on the flow and throughput control of traffic in

the network, and do not address optimization issues about other performance metrics.

Other studies are focused on the probabilistic analysis of the delay in WSNs [8, 55,

57, 70, 101], and a few studies are conducted to investigate the probabilistic lifetime

[71, 72]. While they provide statistical information for the performance metrics of

concern, interrelationship among different performance metrics are left unexamined.

Multiple objective optimization problems are investigated in [10, 22, 50, 82, 84, 96,

103, 104]. Especially, the energy conservation and delay tradeoff problems are studied
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in [10, 22, 50, 84, 104]. However, they do not provide a generic optimization framework

to examine the relationship among other parameters, constraints, and objectives.

Although a generic optimization framework is proposed in [31], like most of the other

studies mentioned above, it does not fully capture the statistical characteristics about

the QoS performance metrics in WSNs.

6.2 Probabilistic Optimization Framework

In this section, the probability optimization framework for WSNs is presented. We

first discuss the probabilistic or deterministic objective and constraint functions,

based on which the probabilistic optimization problems are formulated. For a set of

given probabilistic or deterministic constraints on QoS performance metrics or net-

work parameters, the goal is to find the optimal parameters, such that an objective

QoS performance metric or a network parameter is minimized or maximized, depend-

ing on the application requirements. Finally, we present a multiple-local-search based

technique to find the best estimation of the optimal solution.

6.2.1 Objective and Constraint Functions

Consider a particular probabilistic QoS metric g(d), which is a random function of

a set of design variables d = {di : 1 ≤ i ≤ Nd}, where Nd is the number of design

variables. We are interested in finding the following probabilistic characteristics:

Definition 7. The p-quantile of a probabilistic QoS performance metric g(d), de-

noted by g (p)(d), is defined as the value of g(d) achieved with at least a probability of

p.
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Definition 8. The (pl, ph)-quantile interval of a probabilistic QoS performance

metric g , denoted by g (pl,ph)(d), (pl ≤ ph), is defined as the difference between g (pl)(d)

and g (ph)(d), i.e., g (pl,ph)(d) = g (ph)(d)− g (pl)(d), (pl ≤ ph).

The p-quantile is used to describe the value of the QoS performance with a prob-

ability guarantee, whereas the (pl, ph)-quantile interval is used to describe how the

value is “concentrated” or “spread”, i.e., the predictability. For example, a lower

(0.1, 0.9)-quantile interval of delay means that for the majority of the packets (all

packets other than the fastest 10% and the slowest 10%), the delay is concentrated

in a smaller region between the 10-quantile and the 90-quantile. Thus, the delay is

easier to predict.

It is obvious that the p-quantile and (pl, ph)-quantile interval are directly obtained

from the cdf s of corresponding performance metrics. Given a probabilistic QoS metric

g(d), and its cdf Gg(d)(g), the p-quantile and (pl, ph)-quantile interval are given by

g (p)(d) = G−1
g(d)(p), (6.1)

g (pl,ph)(d) = G−1
g(d)(ph)−G−1

g(d)(pl), (6.2)

respectively, where Gg−1(d)(g) is the inverse function of Gg(d)(g). Obtaining the closed-

from inverse function for Gg(d)(g) in practice may be infeasible. In our evaluations,

we first obtain the numerical expression of the cdf Gg(d)(g), i.e., the probabilities

of g(d) ≤ g for a series of possible values of g are obtained as a series of tuples

(g1, p1), (g2, p2), ... . Then, G
−1
g(d)(p) is obtained by looking up the tuples for the ones

with the closest probabilities, and its value is approximated using spline interpolation.

We also consider the deterministic measure of a set of QoS performance metrics,

f (d), for the scenarios where a probabilistic characterization of these metrics is un-

necessary. The deterministic measure of these metrics are obtained as their expected
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value.

6.2.2 Optimization Problem Formulation

More formally, consider a set of probabilistic QoS performance metrics G = {gj : 1 ≤

j ≤ NG}, and a set of deterministic QoS performance metrics F = {fk : 1 ≤ k ≤ NF },

where NG and NF are the number of probabilistic metrics and deterministic metrics,

respectively. All of these metrics are functions of a set of design variables d = {di :

1 ≤ i ≤ Nd}, where Nd is the number of design variables. Then, the constraints on a

probabilistic performance metric gj can be written as

gql,j ≤ g
(pj)
j (d) ≤ gqh,j, (6.3)

gvl,j ≤ g
(pl,j ,ph,j)
j (d) ≤ gvh,j, (6.4)

where g
(pj)
j is the pj-quantile of metric gj, and g

(pl,j ,ph,j)
j is the (pl,j, ph,j)-quantile inter-

val of metric gj. Moreover, gql,j and gqh,j are the lower and upper quantile requirements

on the pj-quantile; gvl,j and gvh,j are the lower and upper quantile interval requirements

on the (pl,j, ph,j)-quantile interval.

The constraints on a deterministic performance metric fk can be written as

fl,k ≤ fk(d) ≤ fh,k, (6.5)

where fl,k and fl,k are the lower and upper deterministic requirements on metric fk.

Accordingly, the optimization problem can be formulated as one of the following

three.
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6.2.2.1 Quantile Objective Optimization

In this type of optimization problem, the objective function is the po-quantile of some

probabilistic metric go, (1 ≤ o ≤ NG), i.e., the probability objective, where po is an

application specified probability threshold:

min
d

g (po)
o (d) ,

or max
d

g (po)
o (d) , (6.6)

given: dl,i ≤ di ≤ dh,i, (1 ≤ i ≤ Nd), (6.7)

gql,j ≤ g
(pj)
j (d) ≤ gqh,j, (1 ≤ j ≤ NG), (6.8)

gvl,j ≤ g
(pl,j ,ph,j)
j (d) ≤ gvh,j, (1 ≤ j ≤ NG), (6.9)

fl,k ≤ fk(d) ≤ fh,k, (1 ≤ k ≤ NF ), (6.10)

where dl,i and dh,i are the lower and upper bound of the design variable di, respectively.

Whether the problem is a minimization problem or a maximization problem depends

on whether a smaller value or a larger value is desirable by the application. Generally,

when go is the end-to-end delay, the energy consumption, or event detection delay,

the problem is a minimization problem; when go is the network lifetime, the problem

is a maximization problem.

6.2.2.2 Quantile Interval Objective Optimization

In the second type of optimization problem, the objective function is the (pl,o, ph,o)-

quantile interval of some probabilistic metric go, (1 ≤ o ≤ NG), i.e., the reliability



149

objective, where pl,o and ph,o are application specified probability thresholds:

min
d

g
(pl,o,ph,o)
o (d) ,

or max
d

g
(pl,o,ph,o)
o (d) , (6.11)

where the constraints are the same as (6.7) - (6.10).

6.2.2.3 Deterministic Objective Optimization

In the last type of optimization problem, the objective function is one of the deter-

ministic metrics fo, (1 ≤ o ≤ NF ):

min
d

fo(d) ,

or max
d

fo(d) , (6.12)

where the constraints are the same as (6.7) - (6.10). It should be noted that each

design variable can be considered as a deterministic QoS performance metric. For

example, the network density, ρ, is a design variable, but can also be a metric to

minimize. In fact, when the network size is fixed, the network density can be regarded

as a quality of service in broader sense, which describes the cost efficiency the network

can provide.

6.2.3 Solution to the Optimization Problems

The solution to the aforementioned optimization problems is non-trivial. The ma-

jor challenge is due to the generality of the network topology and communication

protocols assumed for the analysis framework. Without a priori knowledge of the

topology and the protocols, the objective function and constraint functions cannot
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Figure 6.1: As a function of the network density and the traffic rate, the objective
function, the 0.8-quantile of energy consumption is non-convex.

be considered convex, nor can they easily be converted to convex functions. In fact,

our case study on a randomly deployed network with an anycast protocol, as will be

discussed in Section 6.3, shows that the network lifetime is non-convex with respect

to one of the design variables, the duty cycle, as depicted in Figure 6.1. Therefore, in

the optimization framework, we use the following heuristic optimization technique.

Assume an optimization problem defined by (6.6), (6.11), or (6.12). The lower

and upper bounds, dl,i, dh,i on each design variable di form an orthogonal polyhedron,

which is called the parameter space of the optimization problem. Each point within

the parameter space corresponds to a vector of design variables that may or may not

satisfy each of the constraint functions. The set of points in the parameter space that

satisfies all the constraint functions is called the feasible region. The goal is to find

the optimal objective function value within the feasible region.

In our proposed solution to the problem, Nsearch local-optimum searches are con-
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ducted with a random initial search point. In each of the multiple searches, the initial

search point is determined by sequentially choosing random points within the param-

eter space, until one point falls within the feasible region. Starting from this point,

a derivative based local optimum search is conducted. Then, the global optimum is

approximated by the best result in all the Nsearch optimum results found by each of

the local searches. In the case when one or more of the local searches cannot converge

due to non-convexity, these search procedures are terminated.

There are multiple benefits by utilizing this multiple-local-search technique. First,

the technique is easy to implement, and does not require any form of prior knowledge

about the topology and protocol. Second, the technique can be easily implemented

taking advantage of multiple CPU cores or computers, since each of the local searches

is totally independent of each other, thus can be run in parallel. Finally, when Nsearch

is large, the optimum found by this technique asymptotically is always the global

optimum, as the optimal solution will eventually coincide with one of the random

initial points. It is easy to adjust the value of Nsearch, such that a trade-off can be

made between the accuracy of result and the computation time efficiency.

6.3 Case Study: Randomly Deployed Network

with Anycast Protocol

In this section, we discuss a case study for the purpose of illustrating the proposed

analysis and optimization framework. For simplicity, we consider a special case with

the anycast protocol and a randomly deployed network. The techniques used in

this chapter can also be applied to networks with other protocols, and networks

with deterministic deployment, which can be considered a special case of random
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deployment with no topology variation.

6.3.1 Topology Model and the Anycast Protocol

We assume that nodes are deployed in a circular plane of radius R, and generate

a homogeneous amount of local traffic to a sink, which is located at the center of

the plane. The battery capacity, C, for each node is the same. Moreover, each node

forwards packets to neighbors closer to the sink. Each node senses the physical events,

and generates packets with traffic rate λlc. By symmetry, the relay traffic λre is the

same for all nodes with the same distance r to the sink. Hence the value of λre, and

other variables for these node are indexed by the distance r.

We consider a network utilizing a protocol with the anycast technique, as explained

in Chapter 2. The analysis for the end-to-end delay and the network lifetime in this

type of networks are described in Chapters 3 and 5, respectively.

6.3.2 Unified Probabilistic QoS Analytical Model

For the anycast protocol, a unified probabilistic analytical model is developed based

on the frameworks developed in Chapters 3 and 5. This unified model captures the

distribution of the end-to-end delay and the network lifetime in WSNs, as explained

in the following.

We consider a 2-D network with a random deployment (the analysis also applies

to the deterministic deployment) as described in Chapter 2. Each node is identified

according to its location x, and is characterized by its input traffic rate, λ(x), queue

length, M(x), and battery capacity, C(x). We also consider a log-normal fading

channel model [107].

For the single-hop delay analysis and the single-node energy consumption analysis,
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we combine the Discrete-Time Markov models in Chapters 3 and 5 by assuming that

there is a single communication attempt for each packet. For protocols with multiple

attempts, applying the proposed analysis techniques is trivial.

Based on this Discrete-Time Markov model, the end-to-end delay distribution and

the network lifetime distribution can be found according to (3.37) in Chapter 3 and

(5.21) in Chapter 5 for random deployment, or (3.35) in Chapter 3 and (5.22) in

Chapter 5 for deterministic deployment.

6.3.3 Probabilistic QoS Optimization Problems

In the following, we define the set of design variables d, the set of probabilistic

metrics G , and the set of deterministic metrics F for random deployed networks with

the anycast protocol.

Although the design variables can be any variable that affects one or more perfor-

mance metrics, in this work, for simplicity we only consider 3 design variables: the

network density ρ, the locally generated traffic rate λlc, and the duty cycle ξ. We also

consider the following probabilistic QoS performance metrics: the end-to-end delay

from a node at the edge of the network to the sink, te2e(R), and the network lifetime,

NL. Note that in the circular plane network topology, the nodes at the edge will have

the largest end-to-end delay. Thus, the end-to-end delay metric here is specifically

the end-to-end delay from the node at the edge of the network area. Moreover, the

deterministic performance metrics include TP , the traffic throughput received by the

sink. In addition, we consider the network size to be fixed, thus the network density,

ρ, is proportional to the total cost of the network, and is considered as a deterministic

QoS metric.
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Therefore,

d = {ρ, λlc, ξ}, (6.13)

G = {te2e(R), NL}, (6.14)

F = {TP, ρ}, (6.15)

where TP is calculated as

TP =

∫
0<r≤R

2πrρλlcpdeli(r)dr, (6.16)

where pdeli(r) is the probability of final delivery of packets from nodes at r to the

sink, and is given by Fe2e(r,∞), the cdf of the end-to-end delay from nodes at r to

the sink, evaluated at t = ∞.

6.4 Numerical Results

In this section, the analysis and optimization framework developed in this chapter

are evaluated for the randomly deployed network with the anycast protocol.

In our analysis, nodes are deployed in a circular plane with radius R = 30m, with

a various network density from ρ = 0.004 to 0.1 nodes/m2. Each node generates

traffic at a rate from λlc = 0.0004 to 0.016 pkt/s. The duty cycle operation period

is 10 s, with a duty cycle ranging from 0.25 to 1. The time unit is chosen as 0.25 s.

The radio, timing and protocol related parameters are shown in Table 6.1, whereas

the channel related parameters (refer to [107] for detailed explanations) are listed in

Table 6.2. The transmission power is set to −10 dBm for all nodes. In the following,

the numerical evaluations of the analysis framework is first presented, followed by the
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Table 6.1: List of radio, timing and protocol related constants and parameters.

Group Notation Description Default Value

Radio

lp data packet size 39 bytes

lm beacon and CTS message size 22 bytes

Rb channel bit rate 250 kbps

Timing

Tp duty cycle period 10 s

Ta wake period 2 s

Tb beacon transmission timeout 10 s

Tmax
ibo maximum initial backoff 9.77 ms

Tmax
cbo maximum congestion backoff 2.44 ms

Ttx data packet transmission time 1.6 ms

Tto beacon transmission interval 0.1 s

Protocol
rth threshold radius 10 m

ψth threshold SNR 10 dBm

results from the optimization framework.

6.4.1 Numerical Analysis of Probabilistic QoS Metrics

In the first set of numerical evaluations, the analysis framework is used to evaluate

the two probabilistic QoS metrics, the end-to-end delay and the network lifetime.

Moreover, one deterministic metric, the throughput of traffic received by the sink, is

also evaluated. As the foundations of the optimization framework, the results of the

analysis are used to reveal the characteristics, including the trends and the convexity,

of the probabilistic and deterministic measures of the performance metrics.
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Table 6.2: List of channel-related constants and parameters.

Group Notation Description Default Value

Channel

Pn noise floor −105 dBm

PL(D0) pass loss at reference distance 52.1 dB

D0 reference distance 1 m

η pass loss exponent 3.3

σs standard deviation of log-normal
fading/shadowing

5.5

0 0.005 0.01 0.015
0

5

10

15

20

25

30

traffic rate λ (pkt/s)

0.
9−

de
la

y 
(s

)

 

 

ρ=0.04 nodes/m2

ρ=0.06 nodes/m2

ρ=0.08 nodes/m2

ρ=0.10 nodes/m2

(a) 0.9-quantile of the end-to-end delay vs. traf-
fic rate. Duty cycle is fixed as 0.2.

0 0.005 0.01 0.015
0

10

20

30

40

50

60

traffic rate λ (pkt/s)

0.
9−

lif
et

im
e 

(d
ay

)

 

 

ρ=0.04 nodes/m2

ρ=0.06 nodes/m2

ρ=0.08 nodes/m2

ρ=0.10 nodes/m2

(b) 0.9-quantile of the network lifetime vs. traffic
rate. Duty cycle is fixed as 0.2.

Figure 6.2: 0.9-quantile of the end-to-end delay and 0.9-quantile of the network life-
time as a function of traffic rate.

6.4.1.1 Probabilistic End-to-End Delay

Figures 6.2(a), 6.3(a), and 6.4(a) depict the 0.9-quantile of the end-to-end delay from

nodes at r to the sink (denoted as “0.9-delay” in the figures). Three design variables

are examined: the locally generated traffic rate λlc, the duty cycle ξ, and the network

density ρ. In each figure, one of these variables is varied, and the change of another

variable is also shown using different curves. The last design variable for each figure

remains fixed, as given in the captions.
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Figure 6.3: 0.9-quantile of the end-to-end delay and 0.9-quantile of the network life-
time as a function of duty cycle.
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Figure 6.4: 0.9-quantile of the end-to-end delay and 0.9-quantile of the network life-
time as a function of network density.

As can be observed from Figure 6.2(a), the 0.9-quantile of the end-to-end delay

increases when the traffic rate increases, since higher traffic rate will cause higher

queueing delay. Moreover, a lower network density will cause the delay to increase

because less nodes will be in active states when each node starts to transmit. Thus,

the waiting time is increased. Note that when traffic rate is high and network density
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is low, the 0.9-quantile of delay does not exist. This is because less than 90% of

packets are delivered to the sink from the edge nodes.

In Figure 6.3(a), it is shown that the 0.9-quantile of the end-to-end delay also

decreases with a higher duty cycle. This is because higher duty cycle increases the

number of active nodes when each node starts to transmit, thus reducing waiting

time. It should be noted that the delay is less sensitive to the traffic rate when the

duty cycle is either low or high. The reason is that when the duty cycle is low, the

network is more likely to be in the saturated state where nodes keep transmitting

without going into sleep or idle mode; when the duty cycle is high, nodes have a high

chance to be immediately available for packet relaying. In both cases, increasing or

decreasing the traffic rate does not change the delay too much.

Figure 6.4(a) shows that when the network density ρ is less than 0.04 nodes/m2,

the 0.9-quantile of the end-to-end delay does not exist. Therefore, when a highly reli-

able network in terms of end-to-end delay is desired, this analysis provides a guideline

to determine network density.

Figures 6.2(a), and 6.3(a) also show that the 0.9-quantile of the end-to-end delay

is generally not a convex function of the traffic rate or the duty cycle. For this type

of non-convex performance measures, the developed heuristic solution is the most

applicable approach we found.

6.4.1.2 Probabilistic Network Lifetime

The similar evaluations of probabilistic network lifetime are conducted and the results

are shown in Figure 6.2(b), 6.3(b), and 6.4(b). It can be shown in Figure 6.2(b)

that the 0.9-quantile of network lifetime decreases with higher traffic rate and higher

network density. This is because higher traffic rate increases the energy nodes spend

on beacon transmission, and higher network density increases the total traffic rate
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forwarded to the sink. Thus, the energy from nodes closer to the sink is drained

faster. Note that when traffic rate is low, lifetime is not sensitive to the network

density, as all nodes tend to perform a homogeneous default duty cycle operation.

Figure 6.3(b) shows that the 0.9-quantile of network lifetime decreases when the

duty cycle increases, as expected. When the duty cycle is low and the traffic rate

is low, nodes consume less energy and the network lifetime is high; when the duty

cycle approaches to 1, the difference of lifetime diminishes among the networks with

different traffic rate, because the energy consumption becomes dominated by idle

listening in longer active periods. When the duty cycle is 1, all nodes remain active

all the time, thus the difference of energy consumption solely comes from the power

consumption used for different node activities. In our numerical evaluations, each

node draws 0.2 mA current when it is listening, and 0.3 mA current when it is

transmitting. Thus, the 0.9-quantile of the network lifetime is slightly higher for

lower traffic rate, as nodes spend less energy on transmission, which is a higher energy

consuming activity.

In Figure 6.4(b), it is shown that the 0.9-quantile of network lifetime has a peak

when the density is around 0.15−0.3 nodes/m2, depending on the duty cycle. This is

because when density is low, there is a higher chance that nodes are isolated from each

other, and will spend more energy on continuously transmitting beacon messages. On

the other hand, when the network density is higher, the total traffic forwarded to the

sink is increased, thus the nodes close to the sink deplete their energy faster.

Figure 6.4(b) also shows that there is clearly a maximum point for each curve.

The optimal network density ρ is different for different values of the duty cycle ξ.

The developed heuristic solution can be used to accurately find the optimal density,

as will be discussed in Section 6.4.2.



160

6.4.1.3 Throughput at the Sink
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Figure 6.5: The throughput as a function of traffic rate, duty cycle, and network
density, respectively.

For the deterministic metric of throughput received at the sink, similar evaluations

are also conducted, except that instead of the quantiles, the deterministic values of

throughput are used. In Figure 6.5(a), it can be observed that the throughput almost

increases linearly with generated traffic rate. However, Figure 6.5(c) shows that this

is only the case for higher density, where almost every generated packet is delivered

to the sink. When density is lower than 0.04 nodes/m2, there is a larger portion of
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packets that are not delivered to the sink, because when each node starts to transmit,

it is less likely to find a neighbor that can relay packets. Moreover, these nodes will

be more likely to build up a full queue, further preventing other nodes to use them

as relay nodes. In both cases, there would be a higher chance of packet dropping.

It is interesting that Figures 6.4(a), 6.4(b), and 6.5(c) all show that network den-

sity lower than 0.4 nodes/m2 would lead to negative impacts on the QoS performances.

Thus, designers of the network should try to avoid such regions.

6.4.1.4 Probabilistic Measures

The analysis framework is also used to evaluate the probabilistic QoS performance

metrics, the end-to-end delay and the network lifetime, in terms of their probabilistic

measures.

Figure 6.6(a) shows the p-quantile of the end-to-end delay with p equal to 0.5, 0.7,

0.9, respectively, as a function of traffic rate. The three curves show the achievable

end-to-end delay with these probabilities. In this evaluation, the network density is

ρ = 0.045 node/m2, and the duty cycle is ξ = 0.2. As a comparison, the average

delay is also shown in the figure. The average delay is calculated as

t̄e2e(R) =

∫ ∞

0

t · fe2e(R, t)dt∫ ∞

0

fe2e(R, t)dt

, (6.17)

where fe2e(R, t) is the pdf of the end-to-end delay from the edge of network to the

sink. Note that the denominator in (6.17) is not necessarily always equal to 1, since in

many cases a portion of packets will never reach the sink and their end-to-end delay

is undefined, hence
∫∞
0
fe2e(R, t)dt may be less than 1.

The change of average delay w.r.t. the traffic rate is similar to the trends of
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Figure 6.6: p-quantile of the end-to-end delay and the average delay vs. network den-
sity. Compared to the average delay analysis, the probabilistic delay analysis provides
more accurate measurement of the end-to-end delay with statistical information.

0.5- and 0.7-quantiles of the delay. However, as the traffic rate increases, the average

delay grows slower than the 0.5-quantile. This is because when traffic rate is higher, a

larger portion of packets is lost. In this evaluation, when the traffic rate is higher than

0.006 pkt/s, more than 10% of packets are lost. The average delay is then calculated

only for those packets that are eventually delivered. Therefore, the average delay

does not contain the information of lost packets. When a high reliability of delay

requirement is desired, the average delay may lead to opposite conclusion. This is

further illustrated in Figure 6.6(b).

Figure 6.6(b) depicts the p-quantile of the end-to-end delay with p equal to 0.5,

0.7, 0.9, respectively, as a function of network density. The traffic rate is 0.016 pkt/s

and the duty cycle remains to be 0.2. When the density is low, a large portion of

packets is lost. In this evaluation, when the density is 0.044 nodes/m2, at least 90%

of packets are delivered from the edge of the network to the sink. When the density

is lowered to 0.04 nodes/m2, the percentage is decreased to values between 90% and

70%. When the density is further lowered to below 0.24 nodes/m2, less than half of
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the packets are delivered. It is expected that further reducing the network density

would cause more packets to drop, and in many applications, this is a very inefficient

use of communication resources, and should be avoided. However, according to the

average delay shown in the figure, when density is low enough, the average delay

would start to decrease, wrongfully suggesting a possible higher performance. In this

case, the provision of statistical information makes probabilistic QoS analysis superior

to average delay analysis.

6.4.2 Probabilistic QoS Optimization

The optimization framework is implemented using MatLab. As presented in Section

6.2, the optimization framework utilizes multiple local search procedures with random

initial points to find possible local optima, and chooses the best solution among the

local optima as the approximated global optimal solution. For the multiple local

searches, each search procedure is implemented using the fmincon function provided

by the optimization toolbox. The optimization algorithm used for fmincon is the

interior point method. For each iteration in the local searches, the values of the

optimization objective function and constraint functions are evaluated at points close

to the current location to determine the estimated location for the next iteration. In

the case where local searches cannot converge, a limit on the number of iterations,

MAX ITER, is enforced.

6.4.2.1 Brute Force Search Solution

Another optimization approach, the brute force search, is used for comparison. The

objective function and constraint functions are evaluated at grid points in the entire

design variable space. In our experiment, the ranges and increments of the three
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design variables are selected as follows. The traffic rate, λlc, varies from 0.0004 pkt/s

to 0.016 pkt/s with an increment of 0.0004 pkt/s; the duty cycle, ξ, varies from 0.025

to 1 with an increment of 0.025; the network density, ρ, varies from 0.004 nodes/m2

to 0.1 nodes/m2 with an increment of 0.004 nodes/m2. Therefore, the design variable

space is represented as a 40×25×40 grid with 40, 000 points. The brute force search

approach is to examine all these 40, 000 points, and find the point with maximum or

minimum objective function while satisfying the constraints.

It should be noted that, since the evaluation of the objective function and con-

straint function values at each point would take approximately 15 − 30 s, the total

calculation time for all these 40, 000 points is approximately 7 − 14 days. In com-

parison, with the search solution developed in Section 6.2, if 4 local searches are

conducted sequentially, each with a maximum iteration of 25, the time needed is

less than 2 hours. In our experiment, to expedite the brute force search, we utilize

the supercomputer Firefly [43] located in Holland Computing Center at University

of Nebraska-Lincoln to parallelize the calculation. In practice, especially when the

dimension of the design variable space is higher, this brute force search approach is

far from practical.

6.4.2.2 Accuracy of the Multiple Local Search

First, we evaluate the “accuracy” of the optimal solution found using the developed

multiple local search technique. Specifically, several setups of the number of searches

Nsearch, and maximum iteration allowed in each search, MAX ITER, are examined.

For an optimization problem, we use the difference between the optimal solution

found with each setup (of Nsearch and MAX ITER) and the optimal solution found

across all setups as the benchmark. It remains an open problem to find the exact

global optimal solution to the probabilistic optimization problems in this dissertation.
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Figure 6.7: The difference between the optimal result found in each setup and the
optimal result found in every setup. In each setup, the number of local searches, and
the maximum iterations are varied. Optimal result from brute force search is also
shown.

In Figure 6.7, the results of the difference for the following optimization prob-

lem are shown: given that the throughput received by the sink is higher than 0.5

pkt/s, and the 0.8-quantile of lifetime is longer than 30 days, the objective is to max-

imize the 0.9-quantile of the end-to-end delay. For each combination of Nsearch and

MAX ITER, 200 optimization procedures are conducted. Each procedure contains

Nsearch local searches. A delay value, which is equal to or higher than the value found

by 90% optimization procedures out of the 200, is shown in the figure.

The entire experiment contains 1600 local searches, out of which the best solution

(difference to minimum delay is 0 in Figure 6.7, absolute value of the end-to-end

delay: 2.29 s) is obtained as the benchmark. For comparison, the brute force search

result for all 40, 000 points in the design variable space is also shown (difference to

minimum delay is 0.0575 s, absolute value: 2.35 s). As can be observed, in all cases

except when Nsearch = 1 andMAX ITER ≤ 15, the developed solution yields a more



166

accurate result than the brute force search.

It can be observed that overall, the developed solution can find an accurate result.

In the worst case, only one local search is conducted, and the search is terminated

after 10 iterations. The solution found is as low as 0.3 s, or 13.1% higher than the

benchmark solution. Moreover, as the number of searches Nsearch increases, or as

the maximum iterations MAX ITER for each search increases, the optimal solution

found becomes closer to the benchmark solution. When MAX ITER ≥ 20, or when

Nsearch ≥ 3, all optimization procedures can find the optimal result with negligible

error.

6.4.2.3 Stochastic Optimization Aided Network Design

In the following, the results obtained by the developed optimization framework are

used to aid the network design in two scenarios.

In the first scenario, the objective is to maximize the 0.8-quantile of the network

lifetime while satisfying that: the throughput is higher than 0.1 pkt/s, the 0.9-quantile

of the end-to-end delay is lower than 15 s, and the (0.1, 0.9)-quantile interval of the

end-to-end delay is lower than a varying value from 6 s to 9 s. The optimal results

found by the developed optimization framework are shown as a black star in Figure

6.8(a) - 6.8(c). It should be noted that only two dimensions (network density and

traffic rate) of the design variable space are shown for clarity. The density-traffic rate

plane is chosen in the 3-D space such that the corresponding duty cycle is the optimal

duty cycle found by the optimization framework.

In the density-traffic rate plane, we also highlight the points satisfying one or more

constraint functions by different markers. The values of constraint function values are

obtained from the brute force search, thus the highlighted points form a grid in the

density-traffic rate plane. Moreover, the boundaries of the region satisfying each of
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Figure 6.8: Optimal network lifetime with varying (0.1, 0.9)-quantile interval require-
ment.

the constraint functions are illustrated using the MatLab function contour. Finally,

the optimal 0.8-quantile of the network lifetime as a function of (0.1, 0.9)-quantile

interval requirement is shown in Figure 6.8(d). The result suggests that a stricter

(0.1, 0.9)-quantile interval requirement leads to a lower 0.8-quantile of the network

lifetime. However, relaxing the (0.1, 0.9)-quantile interval requirement to higher than

7 s would not change 0.8-quantile of the network lifetime too much. This relationship

is useful when a tradeoff between the network lifetime and the variation of the end-

to-end delay must be made.
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(d) Minimum density vs. throughput require-
ment.

Figure 6.9: Optimal network density with varying throughput requirement.

In the second scenario, the objective is to find the lowest network density – and

thus, lowest deployment cost – while satisfying: the 0.9-quantile of the end-to-end

delay is lower than 15 s, the 0.8-quantile of the network lifetime is longer than 15 days,

and the throughput is higher than a varying threshold varying from 0.4 to 3.2 pkt/s.

The optimal results found by the framework are shown in Figures 6.9(a) to 6.9(c),

and the optimal density as a function of throughput requirement is shown in Figure

6.9(d). The result shows that a lower (relaxed) throughput requirement would cause

the lowest density and the total cost of the network to decrease. However, relaxing the

throughput requirement further below 1.6 pkt/s would have almost no impact on the
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lowest density. This is because when the throughput requirement is higher than 1.6

pkt/s, the optimal density is dominantly determined by the throughput requirement

(Figure 6.9(c)), but when the throughput requirement is lower, the optimal density

is dominantly determined by the end-to-end delay requirement (Figures 6.9(a) and

6.9(b)). This is extremely helpful in network design when a tradeoff must be made

between the throughput and deployment cost.

6.5 Conclusions

In this chapter, an optimization framework for probabilistic QoS performance metrics

is developed. Rather than traditional QoS analysis methods such as mean analysis,

the optimization framework utilizes quantile-based QoS measures obtained from the

analysis models in Chapters 3, 4, and 5 of this dissertation. In the framework, the

probabilistic optimization problems are formulated and a heuristic solution is pre-

sented. A case study on the anycast protocol is then provided to show the application

of this framework. Extensive numerical results reveal the relationship between QoS

performance and network parameters. It is also shown that mean analysis may lead to

inaccurate results in network design due to the lack of statistical information, which

is intrinsically provided by probabilistic analysis. Numerical results also show that

the developed optimization framework can be used to choose optimal parameters for

networks.
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Chapter 7

Dissertation Conclusions

In this chapter, we conclude this dissertation by summarizing the contributions and

highlighting a few directions for future research.

7.1 Dissertation Contributions

To the best of our knowledge, this dissertation is the first work that systematically

investigates the probabilistic QoS performance metrics in WSNs. The contributions

of this dissertation are listed in the following.

7.1.1 Formal Definitions of Probabilistic QoS Performance

Metrics

One of the aims in this dissertation is to formulate formal definitions of probabilistic

QoS performance metrics in WSNs. The metrics discussed in this dissertation are:

the end-to-end delay distribution, the network lifetime distribution, and the event

detection delay distribution. From the distributions of these metrics, two probability
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measures for each of these metrics, i.e., the p-quantile measure and the (pl, ph)-bound,

are defined.

7.1.2 Analytical Framework to Evaluate the Probabilistic

QoS Metrics

A probabilistic analytical framework is proposed to evaluate the QoS performance

metrics in two levels. At the node level, a Discrete-Time Markov queueing model is

utilized to investigate probabilistic QoS performance metrics for individual nodes or

hops. The single-hop delay distribution, the single-node energy consumption distri-

bution, and the single-node lifetime distribution are derived at this level.

At the network level, the major challenge is the complexity and non-tractability

of random factors in practical WSNs. Thus, based on the node level analysis, fluid

models are further utilized to simplify the random factors and analyze probabilistic

QoS performance metrics, including the end-to-end delay distribution, the network

lifetime distribution, and the event detection delay distribution. Extensive testbed

experiments and computer simulations are conducted to validate the accuracy of the

framework.

7.1.3 Investigation on Relationship between Network

Parameters and the QoS Performance Metrics

Using the proposed analytical framework, an optimization framework is also proposed

to derive the optimal network and protocol parameters, subject to given probabilistic

QoS performance requirements. This optimization framework is used to investigate

the optimal network parameters, such as node density, traffic generation rate, and

node duty cycle, such that one of the performance metrics or network parameters
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is minimized or maximized, while a set of probabilistic QoS metrics constraints are

satisfied. This framework is then used to aid the design and evaluation of network

parameters and protocols before actually deploying the networks.

7.2 Future Research Directions

The results obtained in this dissertation suggest several potential research directions

in future, as listed below.

• Capturing More Dynamic Elements in WSNs. With technology advances

in both hardware and software, WSNs will most likely be equipped with more

dynamic mechanisms in the future than those being investigated in this disser-

tation. For example, the hardware of sensor nodes may include more dynamic

features such as wake-on-radio and environment energy harvesting, whereas the

software may include routing protocols that are adaptive to the environment,

and in-network processing such as data aggregation and dissemination. Other

dynamic elements include: traffic patterns such as time-of-day dependent traf-

fic, networks with multiple sinks, networks with mobile nodes, and collaborated

sensing and actuation. Capturing these dynamic elements would make the

probabilistic analytical framework more useful in practice.

• Capturing More Complex Events. For the event detection delay analysis

in this dissertation, events are considered to occur at single points and are

isolated from each other. In practice, the occurrences of events are often more

complex. As future work, the event detection delay for simultaneous multiple

events are an important research direction. These simultaneous events can occur

in isolated spatial locations, or their detection ranges may overlap. Moreover,
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the occurrence locations of events may not be single points. Instead, they can

occur along a path, or in an entire area. Moreover, the analysis for events that

are associated with moving objects is also an interesting direction for future

research.

• Making QoS Evaluations Online. Of course, the most challenging obstacle

preventing the developed analytical framework being used online in the actual

sensor nodes is its relatively high computation costs. The main purpose of

developing the probabilistic models in this dissertation is to provide a framework

for offline analysis. However, if the computation costs can be reduced without

losing accuracy greatly, the analysis can conducted by the processors on the

sensor nodes, and thus can be be utilized to make decisions more adaptively

to the dynamic environment and network conditions. Whenever the task, the

topology, or the channel quality changes, the network can simply re-calculate

the optimal parameters or policies. Therefore, how to expedite the calculation

without losing accuracy is a very important research topic.
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